ÇF

Foundations of Computing I

CSE 311: Foundations of Computing I

Some Perspective

About the Course

We will study the theory needed for CSE:
Logic:
How can we describe ideas precisely?
Formal Proofs:
How can we be positive we're correct?
Number Theory:
How do we keep data secure?
Relations/Relational Algebra:
How do we store information?
Finite State Machines:
How do we design hardware and software?
Turing Machines:
Are there problems computers can't solve?

About the Course

It's about perspective!

- Example: Sudoku
- Given one, solve it by hand
- Given most, solve them with a program
- Given any, solve it with computer science
- Tools for reasoning about difficult problems
- Tools for communicating ideas, methods, objectives...
- Tools for automating difficult problems
- Fundamental structures for computer science

This is NOT a programming course!

Administrivia

Instructor: Adam Blank

Teaching Assistants:
Christopher Choi
Michael Lee
Halden Lin
Elizabeth Moore
Nicole Riley
Logan Weber
Jefferson Van Wagenen
(Optional) Books:
Rosen, Velleman, MIT Book
Don't buy new copies!

Homework:
Due 11:30pm
Write up individually
Section:
Thursdays

Grading (roughly):
50\% Homework
20\% Midterm
30\% Final Exam

All Course Information @ cs.uw.edu/311

Logic: The Language of Reasoning

Why not use English?

- Turn right here...

Does "right" mean the direction or now?

- Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo
This means "Bison from Buffalo, that bison from Buffalo bully, themselves bully bison from Buffalo.
- We saw her duck

Does "duck" mean the animal or crouch down?
"Language of Reasoning" like Java or English

- Words, sentences, paragraphs, arguments...
- Today is about words and sentences

Why Learn A New Language?

Logic, as the "language of reasoning", will help us...

- Be more precise
- Be more concise
- Figure out what a statement means more quickly

Propositions

A proposition is a statement that

- has a truth value, and
- is "well-formed"

Are These Propositions?

$2+2=5$

The home page renders correctly in IE.
Turn in your homework on Wednesday.
This statement is false.

Akjsdf!

Who are you?

Every positive eveninteger can be written as the sum of two primes.

Are These Propositions?

$2+2=5$
This is a proposition. It's okay for propositions to be false.
The home page renders correctly in IE.
This is a proposition. It's okay for propositions to be false.
Turn in your homework on Wednesday.
This is a "command" which means it doesn't have a truth value.
This statement is false.
This statement does not have a truth value! (If it's true, it's false, and vice versa.)

Akjsdf!

This is not a proposition because it's gibberish.
Who are you?
This is a question which means it doesn't have a truth value.
Every positive even integer can be written as the sum of two primes.

This is a proposition. We don't know if it's true or false, but we know it's one of them!

Propositions

A proposition is a statement that

- has a truth value, and
- is "well-formed"

We need a way of talking about arbitrary ideas...

Propositional Variables: p, q, r, s, \ldots
Truth Values:

- T for true
- F for false

A Proposition

"Roger is an orange elephant who has toenails if he has tusks, and has toenails, tusks, or both."

We'd like to understand what this proposition means.

This is where logic comes in. There are pieces that appear multiple times in the phrase (e.g., "Roger has tusks").

These are called atomic propositions. Let's list them:
RElephant: "Roger is an orange elephant"
RTusks: "Roger has tusks"
RToenails: "Roger has toenails"

Putting Them Together

"Roger is an orange elephant who has toenails if he
has tusks, and has toenails, tusks, or both."
RElephant: "Roger is an orange elephant"
RTusks: "Roger has tusks"
RToenails: "Roger has toenails"
Now, we put these together to make the sentence:

REfephant and (RToenails if RTusks) and (RToenails or RTusks or (RToenails and RTusks))
\qquad
This is the general idea, but now, let's define our formal language.

Logical Connectives if $(1$ p)

Negation (not)

Conjunction (and $p \wedge q$

Disjunction (or)
Exclusive Or Implication

Biconditional

"Roger is an orange elephant who has toenails if he has tusks, and has toenails, tusks, or both."

RElephant and (RToenails if RTusks) and (RToenails or RTusks or (RToenails and RTusks))

Logical Connectives

Negation (not)

Conjunction (and) $p \wedge q$
$\begin{array}{ll}\text { Disjunction (or) } & p \vee q \\ \text { Exclusive Or } & p \oplus q\end{array}$ Implication

Biconditional
$\neg p$
$p \leftrightarrow q$

RElephant:
"Roger is an orange elephant"
RTusks:
"Roger has tusks"
RToenails:
"Roger has toenails"
"Roger is an orange elephant who has toenails if he has tusks, and has toenails, tusks, or both."

RElephant and (RToenails if RTusks) and (RToenails or RTusks or (RToenails and RTusks))

RElephant $\wedge($ RToenails if RTusks $) \wedge($ RToenails \vee RTusks $\vee($ RToenails $\wedge R T u s k s))$

Some Truth Tables

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \vee \boldsymbol{q}$

Some Truth Tables

\boldsymbol{p}	$\neg \boldsymbol{p}$
T	F
F	T

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \wedge \boldsymbol{q}$
T	T	T
T	F	F
F	T	F
F	F	F

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \mathbf{v} \boldsymbol{q}$
T	T	T
T	F	T
F	T	T
F	F	F

Implication

"If it's raining, then I have my umbrella"
\rightarrow ——~~

It's useful to think of implications as promises. That is "Did I lie?"

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \rightarrow \boldsymbol{q}$
T	T	T
T	F	F
F	T	T
F	F	T

Implication

"If it's raining, then I have my umbrella"

It's useful to think of implications as promises. That is "Did I lie?"

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

	It's raining	It's not raining
I have my umbrella	No	No
I do not have my umbrella	Yes	No

The only lie is when:
(a) It's raining AND
(b) I don't have my umbrella

Implication

"If it's raining, then I have my umbrella"

Are these true?

\mathbf{p}	\boldsymbol{q}	$\mathbf{p} \rightarrow \boldsymbol{q}$
T	T	T
T	F	F
F	T	T
F	F	T

$2+2=4 \rightarrow$ earth is a planet
$2+2=5 \rightarrow$ bears are commonly found near seals
(1) "I have collected all 151 Pokémon if I am a Pokémon master"
(2) "I have collected all 151 Pokémon only if I am a Pokémon master"

These sentences are "duals" of each other:
(1)
(2)

$p \rightarrow q$

Implication:

- p implies q
- whenever p is true q must be true

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

- if p then q
$-q$ if p
$-p$ is sufficient for q
$-p$ only if q

Biconditional: $p \leftrightarrow q$

- p iff q
- p is equivalent to q
- p implies q and q implies p

p	q	$p \leftrightarrow q$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}

