Adam Blank Spring 2017

Foundations of
Computing |

* All slides are a combined effort between
previous instructors of the course

CSE 311.: Foundations of Computing

Lecture 25: Limits of FSMs

\ SAD THRED BE
IRREGULARITNIES

LWELL, (HERE'S ONE:

DFAs = Regular expressions

We have shown how to build an optimal DFA for every
regular expression

— Build NFA
— Convert NFA to DFA using subset construction
— Minimize resulting DFA

Theorem: Alanguage is recognized by a DFA if and
only if it has a regular expression

The second direction will be completely untested. I'm
happy to discuss it with you at office hours, but we have
more important things to discuss today.

Languages and Machines!

Context-Free

Regular

{001, 10, 12}

Languages and Machines!

Context-Free

Regular

languages
are regular.

Finite

{001, 10, 12}

DFAs Recognize Any Finite Language

DFAs Recognize Any Finite Language

Construct DFAs for each string in the language.

This is basically the idea behind a “trie” which is the first data
structure you'll implement in 332.

Then, put them together using the union construction.

An Interesting Infinite Regular Language

L = {xe {0, 1}": x has an equal number of substrings 01 and 10}.

L is infinite.
0 , QO} 00 O/

L is regular.
ol10

ddid

The language of “Binary Palindromes” is Context-Free

S—e]0]1]0S0 | 1s1

We good?

Languages and Machines!

Context-Free

Warmup 2:
Surprising
example here

Regular

Finite

Trie
(DFA with no cycles)

{001, 10, 12}

An Interesting Infinite Regular Language

L = {xe {0, 1}": x has an equal number of substrings 01 and 10}.

L is infinite.
0, 00, 000, ... |

L is regular.

The language of “Binary Palindromes” is Regular

The language of “Binary Palindromes” is Regular

)
|Sltth0ugh'7 \)“) 1 Y) Al
1ol J1a7 |
Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide the
language?

A: It would need to keep track of the “first part” of the input
in order to check the second part against it

...but there are an infinite # of possible first parts and we
only have finitely many states.

Languages and Machines!

Context-Free

Main Event:
Prove there is
a context-free
language
that isn't
regular.

Finite

{001, 10, 12}

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it’s possible.
— Therefore, some DFA (call i@exists that accepts@

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it’s possible.
— Therefore, some DFA (call it M) exists that accepts B

— Our goal is to “confuse” M. Thatis, we want to show
it “does the wrong thing”.

How can a DFA be “wrong” or “broken”?

Just like the errors you were getting on the

homework, a DFA is “broken” when it accepts or
rejects a string it shouldn’t.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it’s possible.
— Therefore, some DFA (call it M) exists that accepts B

— Our goal is to “confuse” M. Thatis, we want to show
it “does the wrong thing”.

How can a DFA be “wrong” or “broken”?

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it’s possible.
— Therefore, some DFA (call it M) exists that accepts B

— Our goal is to “confuse” M. Thatis, we want to show
it “does-the-wrong-thing” accepts or rejects a string
it shouldn’t.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it’s possible.
— Therefore, some DFA (call it M) exists that accepts B

— We want to show M accepts or rejects a string it

’ R DL S0
shouldn’t. -é@’j’ o g

Key Idea 1. If two strings “collide” at any point, an

FSM can no longer distinguish between them!
O AA O) ot b e sany, Sk
- 0llx Ak QIX ow p ™y ,(z‘\,\(F)/J(W [r(

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it's possible.
— Therefore, some DFA (call it M) exists that accepts B

— We want to show M accepts or rejects a string it
shouldn’t.

Key Idea 1: If two strings “collide” at any point, an
FSM can no longer distinguish between them!

Key Idea 2: Our machine has a finite number of
states which means if we have infinitely many
strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
— Assume (for contradiction) that it’s possible.
— Therefore, some DFA (call it M) exists that accepts B
— We want to show M accepts or rejects a string it
shouldn’t.

— We choose an INFINITE set of “half strings” (which
we intend to complete later). It is imperative that if
we choose a completion, it “correctly” completes
exactly one string.

01029 1 1 0
00.12°0 10 01 01
00022° 100 001 101
000022 1000 0001 0101
00000'°%9 49000, 00001, 10101

B = {binary palindromes} can’t be recognized by any DFA

Working: | £/0/00/000/ | £/0/00/000/ £/0/00/000/ £/0/00/000/ /!, £/0/00/000/
OrKINg: | 10/110/.. | 100/1100/.. | 1000/11000/.. | 10000/1100008/.. | 100000/1100000..
-0 oner caumm O 00 000 0000
0" o ke s o
.10 10 | soem 100 1000 10000 100000
@ This is already a problem.
0 00 700 Since & works for two different
/771/ L . .
(7 start strings, this is not a valid
completion choice.
0.0 @ This is a problem. Since 01
001 0001 00001 0\\’{‘ NEVER results in an accept, for
<0 any first string, this isn’t going
to work.
0°..10° There’s exactly one green in
010 0010 00010 . 1
Just right! each column and each row!
0100 00100 000100 Perfect!

01000 001000 0001000

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...}={0"1: n > 0}.

Key Idea 2: Our machine has a finite number of states which means
if we have infinitely many strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} =@: n >0}
. 20) 0°

©] ~ o’z on
Since there are finitely many states and infinitely many strings
in S, there exists strings 021 € S and 0°1€ S that end in the
same state.

SUPER IMPORTANT POINT: You do not get to choose
what a and be are. Remember, we’ve proven they
exist...we have to take the ones we’re given!

[Jo1.. [ob1..
B

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We show M accepts or rejects a string it shouldn’t.

Consider S ={0"1:n > 0}.

Since there are finitely many states and infinitely many strings

in S, there exists strings 021 € S and 01 € S that end in the
same state.

Now, consider appending 02 to both strings.

T
K o100 o010

Keyldea 1: If two strings “collide” at any point, an FSM can no
longer distinguish between them!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We show M accepts or rejects a string it shouldn’t.
Consider S={0"1: n > 0}.

Since there are finitely many states and infinitely many
strings in S, there exists strings 021 € S and 0°1 € S that
end in the same state with a # b.

Now, consider appending 02 to both strings. Then, since
021 and 0°1 are in the same state, 0102 and 0°10? also
end in the same state. Since 0°102 € B, this state must be
an accept state. But, then M accepts 0°10? ¢ B.

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We show M accepts or rejects a string it shouldn’t.

Consider S ={0"1:n > 0}.

Since there are finitely many states and infinitely many strings
in S, there exists strings 021 € S and 01 € S that end in the
same state witha # b.

Now, consider appending 02 to both strings. Then, since 071
and 0°1 are in the same state, 02102 and 0°102 also end in the
same state. Since 02107 € B, this state must be an accept

state. But, then M accepts 0°10? ¢ B.
o'l

This is a contradiction, because we assumed M accepts B.
Since M was arbitrary, there is no DFA that accepts B.

Showing a Language L is not regular

1. “Suppose for contradiction that some DFA M accepts L.”

2. Consider an INFINITE set of “half strings” (which we
intend to complete later). It is imperative that every
string in our set have a DIFFERENT, SINGLE “accept”
completion.

3. “Since S is infinite and M has finitely many states, there
must be two strings s; and s; in S for some i #j that end up
at the same state of M.”

4. Consider appending the (correct) completion to one of the
two strings.

5. *“Since s; and s; both end up at the same state of M, and
we appended the same string t, both st and st end at
the same state of M. Sincest € Land st ¢L, Mdoes
not recognize L.”

6. “Since M was arbitrary, no DFA recognizes L.”

Prove A ={0"1": n 2 O} is not regular

Suppose for contradiction that some DFA, M, accepts A.

LetS =

Prove A ={0"1": n 2 O} is not regular

Suppose for contradiction that some DFA, M, accepts A.

LetS ={0": n 2 0}. Since S is infinite and M has finitely many
states, there must be two strings, 0' and 0/ (for some i # j)
that end in the same state in M.

Consider appending 1 to both strings. Note that 0'1i € A, but
0i1i¢ Asincei #j. Butthey both end up in the same state of
M. Since that state can’t be both an accept and reject state,
M does not recognize A.

Since M was arbitrary, no DFA recognizes A.

Another Irregular Language Example

L = {x € {0,1,2}": x has an equal number of substtings 01 and 10}.

Intuition: Need to remember difference in # of 01 or 10 substrings
seen, but only hard to do if these are separated by 2’s.

Suppose for contradiction that some DFA, M, accepts L.
Let S ={¢, 012, 012012, 012012012, ...} = {(012)": n € N}

Another Irregular Language Example

L = {xe {0,1,2}": x has an equal number of substrings 01 and 10}.

Intuition: Need to remember difference in # of 01 or 10 substrings
seen, but only hard to do if these are separated by 2’s.

Suppose for contradiction that some DFA, M, accepts L.

Let S ={¢, 012, 012012, 012012012, ...} = {(012)": n € N}

Since S is infinite and M is finite, there must be two strings
(012) iand (012) i for some i # j that end up at the same state of
M. Consider appending string t = (102) to each of these strings.

Then, (012)' (102)! € L but (012))(102)' & Lsincei#j.

So (012) 1(102) 1 and (012) } (102) ! end up at the same state of
M since (012) 'and (012) ! do. Since (012)'(102)! € L and
(012)i(102)! € L, M does not recognize L.

Since M was arbitrary, no DFA recognizes L.

