
Foundations of
Computing I

CSE311

Adam Blank Spring 2017

* All slides are a combined effort between
previous instructors of the course

DFAs ≡ Regular expressions

We have shown how to build an optimal DFA for every
regular expression
– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Theorem: A language is recognized by a DFA if and
only if it has a regular expression

The second direction will be completely untested. I’m
happy to discuss it with you at office hours, but we have
more important things to discuss today.

CSE 311: Foundations of Computing

Lecture 25: Limits of FSMs

Languages and Machines!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Languages and Machines!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Warmup:
All finite
languages
are regular.

DFAs Recognize Any Finite Language

DFAs Recognize Any Finite Language

Construct DFAs for each string in the language.

Then, put them together using the union construction.

This is basically the idea behind a “trie” which is the first data
structure you’ll implement in 332.

Languages and Machines!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Warmup 2:
Surprising
example here

Trie
(DFA with no cycles)

An Interesting Infinite Regular Language

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.

L is regular.

An Interesting Infinite Regular Language

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.
0, 00, 000, …

L is regular.

The language of “Binary Palindromes” is Context-Free

S → 𝜀 | 0 | 1 | 0S0 | 1S1

We good?

The language of “Binary Palindromes” is Regular

The language of “Binary Palindromes” is Regular

Is it though?

Intuition (NOT A PROOF!):
Q: What would a DFA need to keep track of to decide the

language?
A: It would need to keep track of the “first part” of the input

in order to check the second part against it
…but there are an infinite # of possible first parts and we
only have finitely many states.

Languages and Machines!

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

??? Main Event:
Prove there is
a context-free
language
that isn’t
regular.

{001, 10, 12}

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
– Assume (for contradiction) that it’s possible.
– Therefore, some DFA (call it M) exists that accepts B

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
– Assume (for contradiction) that it’s possible.
– Therefore, some DFA (call it M) exists that accepts B

– Our goal is to “confuse” M. That is, we want to show
it “does the wrong thing”.

How can a DFA be “wrong” or “broken”?

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
– Assume (for contradiction) that it’s possible.
– Therefore, some DFA (call it M) exists that accepts B
– Our goal is to “confuse” M. That is, we want to show

it “does the wrong thing”.

How can a DFA be “wrong” or “broken”?

Just like the errors you were getting on the
homework, a DFA is “broken” when it accepts or
rejects a string it shouldn’t.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
– Assume (for contradiction) that it’s possible.
– Therefore, some DFA (call it M) exists that accepts B
– Our goal is to “confuse” M. That is, we want to show

it “does the wrong thing” accepts or rejects a string
it shouldn’t.

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
– Assume (for contradiction) that it’s possible.
– Therefore, some DFA (call it M) exists that accepts B
– We want to show M accepts or rejects a string it

shouldn’t.

Key Idea 1: If two strings “collide” at any point, an
FSM can no longer distinguish between them!

0i1 ?
0j1

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
– Assume (for contradiction) that it’s possible.
– Therefore, some DFA (call it M) exists that accepts B
– We want to show M accepts or rejects a string it

shouldn’t.

Key Idea 1: If two strings “collide” at any point, an
FSM can no longer distinguish between them!

Key Idea 2: Our machine has a finite number of
states which means if we have infinitely many
strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

The general proof strategy is:
– Assume (for contradiction) that it’s possible.
– Therefore, some DFA (call it M) exists that accepts B
– We want to show M accepts or rejects a string it

shouldn’t.
– We choose an INFINITE set of “half strings” (which

we intend to complete later). It is imperative that if
we choose a completion, it “correctly” completes
exactly one string.

0
00

000
0000

00000

1
10

100
1000

10000

1
01

001
0001

00001

0
01

101
0101

10101

B = {binary palindromes} can’t be recognized by any DFA

0n… 0… 00… 000… 0000… 00000…

Working: 𝜀/0/00/000/	
10/110/…

𝜀/0/00/000/
100/1100/…

𝜀/0/00/000/
1000/11000/…

𝜀/0/00/000/
10000/1100000/…

𝜀/0/00/000/
100000/1100000/…

…0n-‐1 0 00 000 0000

…0n1
…10n 10 100 1000 10000 100000

No! “0” appears in
other columns.

Only column
with 100!

Nothing fits here! We
can’t make this work.

0n…0n-1 0… 00… 000…

…𝜀 0 00

…0

…00

This is already a problem.
Since 𝜀 works for two different
start strings, this is not a valid
completion choice.

0n…0n1 0… 00… 000…

…01 001 0001 00001

…001

…0001

This is a problem. Since 01
NEVER results in an accept, for
any first string, this isn’t going
to work.

0n…10n 0… 00… 000…

…10 010 0010 00010

…100 0100 00100 000100

…1000 01000 001000 0001000

Just right!
There’s exactly one green in
each column and each row!
Perfect!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥	 0}.

Key Idea 2: Our machine has a finite number of states which means
if we have infinitely many strings, two of them must collide!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥	 0}.

Since there are finitely many states and infinitely many strings
in S, there exists strings 0a1 ∈ S and 0b1∈ S that end in the
same state.

SUPER IMPORTANT POINT: You do not get to choose
what a and be are. Remember, we’ve proven they
exist…we have to take the ones we’re given!

0a1… 0b1…
…

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We show M accepts or rejects a string it shouldn’t.
Consider S = {0n1 : n ≥	 0}.
Since there are finitely many states and infinitely many strings
in S, there exists strings 0a1 ∈ S and 0b1 ∈ S that end in the
same state.

Now, consider appending 0a to both strings.

Key Idea 1: If two strings “collide” at any point, an FSM can no
longer distinguish between them!

0a1… 0b1…
…0a 0a10a 0b10a

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We show M accepts or rejects a string it shouldn’t.
Consider S = {0n1 : n ≥	 0}.
Since there are finitely many states and infinitely many
strings in S, there exists strings 0a1 ∈ S and 0b1 ∈ S that
end in the same state with a ≠ b.
Now, consider appending 0a to both strings. Then, since
0a1 and 0b1 are in the same state, 0a10a and 0b10a also
end in the same state. Since 0a10a ∈ B, this state must be
an accept state. But, then M accepts 0b10a ∉ B.

0i1 0i

0j1

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We show M accepts or rejects a string it shouldn’t.
Consider S = {0n1 : n ≥	 0}.
Since there are finitely many states and infinitely many strings
in S, there exists strings 0a1 ∈ S and 0b1 ∈ S that end in the
same state with a ≠ b.
Now, consider appending 0a to both strings. Then, since 0a1
and 0b1 are in the same state, 0a10a and 0b10a also end in the
same state. Since 0a10a ∈ B, this state must be an accept
state. But, then M accepts 0b10a ∉ B.

This is a contradiction, because we assumed M accepts B.
Since M was arbitrary, there is no DFA that accepts B.

0i1 0i

0j1

Showing a Language L is not regular
1. “Suppose for contradiction that some DFA M accepts L.”
2. Consider an INFINITE set of “half strings” (which we

intend to complete later). It is imperative that every
string in our set have a DIFFERENT, SINGLE “accept”
completion.

3. “Since S is infinite and M has finitely many states, there
must be two strings si and sj in S for some i ≠j that end up
at the same state of M.”

4. Consider appending the (correct) completion to one of the
two strings.

5. “Since si and sj both end up at the same state of M, and
we appended the same string t, both sit and sjt end at
the same state of M. Since sit∈ L and sjt ∉ L, M does
not recognize L.”

6. “Since M was arbitrary, no DFA recognizes L.”

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, accepts A.

Let S =

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, accepts A.

Let S = {0n : n ≥ 0}. Since S is infinite and M has finitely many
states, there must be two strings, 0i and 0j (for some i ≠ j)
that end in the same state in M.

Consider appending 1i to both strings. Note that 0i1i∈ A, but
0j1i ∉ A since i ≠ j. But they both end up in the same state of
M. Since that state can’t be both an accept and reject state,
M does not recognize A.
Since M was arbitrary, no DFA recognizes A.

Another Irregular Language Example
L = {x ∊ {0,1,2}*	 : x has an equal number of substrings 01 and 10}.
Intuition:	 Need	 to	 remember	 difference	 in	 #	 of	 01 or 10 substrings	
seen,	 but	 only	 hard	 to	 do	 if	 these	 are	 separated	 by	 2’s.

Suppose for contradiction that some DFA, M, accepts L.
Let S = {ε, 012, 012012, 012012012, ...} = {(012)n : n ∊ ℕ}

Another Irregular Language Example
L = {x∊ {0,1,2}*	 : x has an equal number of substrings 01 and 10}.
Intuition:	 Need	 to	 remember	 difference	 in	 #	 of	 01 or 10 substrings	
seen,	 but	 only	 hard	 to	 do	 if	 these	 are	 separated	 by	 2’s.

Suppose for contradiction that some DFA, M, accepts L.
Let S = {ε, 012, 012012, 012012012, ...} = {(012)n : n ∊ ℕ}
Since S is infinite and M is finite, there must be two strings
(012) i and (012) j for some i ≠ j that end up at the same state of
M. Consider appending string t = (102) i to each of these strings.

Then, (012)i (102) i ∈ L but (012) j (102) i ∉ L since i ≠ j.
So (012) i (102) i and (012) j (102) i end up at the same state of
M since (012) i and (012) j do. Since (012) i (102) i ∈ L and
(012) j (102) i ∉ L, M does not recognize L.

Since M was arbitrary, no DFA recognizes L.

