ÇFF

Foundations of

 Computing I* All slides are a combined effort between previous instructors of the course

CSE 311: Foundations of Computing

Lecture 20: Finite State Machines (DFAs)

A Weird Sort of Programming!

OlO1 \rightarrow one
$101 \rightarrow$ one
10
What does this "thing" do?

Take a guess!

If you had to give this "method" a name, what would it be?
looolerm isEven (Sting S)

A Weird Sort of Programming!

What does this "thing" do?
Take a guess!
If you had to give this "method" a name, what would it be?
boolean isEven(binary s)

Finite State Machines ("DFAs")

Applications of FSMs (a.k.a. finite automata)

- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cachecoherence protocols
- Each agent runs its own FSM
- Design specifications for reactive systems
- Components are communicating FSMs

Applications of FSMs (a.k.a. finite automata)

- Formal verification of systems
- Is an unsafe state reachable?
- Computer games
- FSMs provide worlds to explore
- Minimization algorithms for FSMs can be extended to more general models used in
- Text prediction
- Speech recognition

What language does this machine recognize?

What language does this machine recognize?

All binary strings with even length

Why is this not a DFA? Fix it!

Why is this not a DFA? Fix it!

DFAs must have a transition for every character at every state!

Why is this not a DFA? Fix it!

"Garbage states" are a useful concept. Whenever we KNOW we can't accept the string, just send it to a state that will always go back to itself. This is the way of saying "return false" in DFA-land.

For each of the following languages, create a DFA

For each of the following languages, create a DFA
\varnothing

$$
\left\{x \in\{0,1\}^{*}: \operatorname{len}(x)>1\right\}
$$

Σ^{*}
0,1

FSM that accepts strings of a's, b's, c's with no more than 3 a's

FSM that accepts strings of a's, b's, c's with no more than 3 a's

Strings over $\{0,1,2\} *$

M_{1} : Strings with an even number of 2's

M_{2} : Strings where the sum of digits mod 3 is 0

Strings over \{0, 1, 2\}*

M_{1} : Strings with an even number of 2's

M_{2} : Strings where the sum of digits mod 3 is 0

Strings with an even number of 2's AND a mod 3 sum of 0

Strings with an even number of 2's AND a mod 3 sum of 0

Strings with an even number of 2's OR a mod 3 sum of 0

Strings with an even number of 2's OR a mod 3 sum of 0

FSM that accepts binary strings with a 1 three positions from the start

