CSE 311: Foundations of Computing |

Induction Solutions

Induction
(a) Prove that 9 | n3 + (n +1)3 + (n + 2)3 for all n > 1 by induction.

(c)

Solution:

Let P(n) be “9 | n3 + (n+1)3 + (n + 2)3". We will prove P(n) for all integers n > 1 by induction.

Base Case (n =2): 22+ (2+1)2+(2+2)> =8+4274+64=99=9-11,509 | 23+ (2+1)3+ (2+2)3,
so P(2) holds.

Induction Hypothesis: Assume that 9 | j3 + (5 + 1)3 + (j + 2)3 for some arbitrary integer j > 1. Note
that this is equivalent to assuming that j2 + (j + 1)3 + (j + 2)3 = 9k for some integer k.

Induction Step: |Goal: Show 9 | (5 +1)3 + (j +2)3 + (j + 3)®
Now

G+1P4+ (G +2)3+ (G +3)° = (j +3)% + 9k — 43 for some integer k [Induction Hypothesis]
= i3 4952 + 275 + 27 + 9k — 5°
=952 4275 + 27 + 9k
=9(j°+3j +3+k)

So 9| (j4+1)34 (5 +2)%+(j+3)3 so P(j) — P(j + 1) for an arbitrary integer j > 1.
Conclusion: P(n) holds for all integers n > 1 by induction.

Prove that 6n + 6 < 2" for all n > 6.

Solution:

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction.
Base Case (n =6): 6-6+6 =42 < 64 = 25, so P(6) holds.

Induction Hypothesis: Assume that 65 + 6 < 27 for some arbitrary integer j > 6.

Induction Step: | Goal: Show 6(j +1) + 6 < 2/t
Now

6(j+1)+6=06j+6+6

<2946 [Induction Hypothesis]
<242 [Since 27 > 6, since j > 6]
<2.2

< i+l

So P(j) — P(j + 1) for an arbitrary integer j > 6.
Conclusion: P(n) holds for all integers n > 6 by induction.

Define
H=1+4+-4--+

Prove that Hon > 1 + % for n € N.



Solution:

We define H; more formally as 22:1 1. Let P(n) be “Hyn > 1+ 2". We will prove P(n) for all n € N
by induction.

Base Case (n=0): Hy =Hi =3 ;_,+=1>1+19, so P(0) holds.
Induction Hypothesis: Assume that Hy; > 1+ % for some arbitrary integer j € N.

i+ 1
Induction Step: | Goal: Show Hyj+1 > 1+ %

Now

J 1 : :
> = —
1+ 5 + E k: [Induction Hypothesis]

1 . . ‘ 1
>14%+2 . —— [There are 2/ terms in [2/ +1,27"1] and each is at least W]

So P(j) — P(j + 1) for an arbitrary integer j € N.
Conclusion: P(n) holds for all integers n € N by induction.

Strong Induction
(a) Prove that, for all n € N, every n has an unsigned binary representation.

Solution:

Let P(n) be "n has an unsigned binary representation”. We will prove P(n) for all integers n € N by
induction.

Base Case (n = 0): The unsigned binary representation of 0 is 02, so P(0) holds.
Induction Hypothesis: Assume that P(j) holds for all integers 0 < j < k for some arbitrary k € N.

Induction Step: ’Goal: Show P(k 4+ 1) has an unsigned binary representation‘

Let 2¢ be the largest power of two not greater than k + 1 (i.e. £ = [logy(n)]). Let r =k + 1 — 2¢,
the remainder.

Note that 7 < 2¢ < k, so r has some binary representation 7 [by the Induction Hypothesis].

Then 1r9 is the binary expansion for k + 1.

So P(O) AP(1)A--- A P(k) — P(k+ 1) for some arbitrary k € N.

Conclusion: P(n) holds for all integers n € N by induction.



(b) Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the

function f:
f(0)=0
fy=1
fn)=2f(n—1) = f(n—2)

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n.

Solution:
Let P(n) be “f(n) =n". We prove that P(n) is true for all n € N by strong induction on n.

Base Cases (n =0,n=1): f(0) =0 and f(1) = 1 by definition.

Induction Hypothesis: Assume that P(0) A P(1) A ... P(n — 1) are true for some fixed but arbitrary
n—1>1.

Induction Step: We show P(n):

fn)=2f(n—-1)— f(n—2) [Definition of f]
=2(n—1)—(n—2) [Induction Hypothesis]
=n [Algebra]

Therefore, P(n) is true for all n € N.



