
CSE 311: Foundations of Computing I
Induction Solutions

Induction
(a) Prove that 9 | n3 + (n+ 1)3 + (n+ 2)3 for all n > 1 by induction.

Solution:
Let P (n) be “9 | n3 + (n+ 1)3 + (n+ 2)3”. We will prove P (n) for all integers n > 1 by induction.

Base Case (n = 2): 23+(2+1)3+(2+2)3 = 8+27+64 = 99 = 9 · 11, so 9 | 23+(2+1)3+(2+2)3,
so P (2) holds.

Induction Hypothesis: Assume that 9 | j3 + (j + 1)3 + (j + 2)3 for some arbitrary integer j > 1. Note
that this is equivalent to assuming that j3 + (j + 1)3 + (j + 2)3 = 9k for some integer k.

Induction Step: Goal: Show 9 | (j + 1)3 + (j + 2)3 + (j + 3)3

Now

(j + 1)3 + (j + 2)3 + (j + 3)3 = (j + 3)3 + 9k − j3 for some integer k [Induction Hypothesis]
= j3 + 9j2 + 27j + 27 + 9k − j3

= 9j2 + 27j + 27 + 9k

= 9(j2 + 3j + 3 + k)

So 9 | (j + 1)3 + (j + 2)3 + (j + 3)3, so P (j) → P (j + 1) for an arbitrary integer j > 1.
Conclusion: P (n) holds for all integers n > 1 by induction.

(b) Prove that 6n+ 6 < 2n for all n ≥ 6.

Solution:
Let P (n) be “6n+ 6 < 2n”. We will prove P (n) for all integers n ≥ 6 by induction.

Base Case (n = 6): 6 · 6 + 6 = 42 < 64 = 26, so P (6) holds.
Induction Hypothesis: Assume that 6j + 6 < 2j for some arbitrary integer j ≥ 6.
Induction Step: Goal: Show 6(j + 1) + 6 < 2j+1

Now

6(j + 1) + 6 = 6j + 6 + 6

< 2j + 6 [Induction Hypothesis]
< 2j + 2j [Since 2j > 6, since j ≥ 6]
< 2 · 2j

< 2j+1

So P (j) → P (j + 1) for an arbitrary integer j ≥ 6.
Conclusion: P (n) holds for all integers n ≥ 6 by induction.

(c) Define
Hi = 1 +

1

2
+ · · ·+ 1

i

Prove that H2n ≥ 1 + n
2 for n ∈ N.
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Solution:
We define Hi more formally as

∑i
k=1

1
k . Let P (n) be “H2n ≥ 1 + n

2 ”. We will prove P (n) for all n ∈ N
by induction.

Base Case (n = 0): H20 = H1 =
∑1

k=1
1
k = 1 ≥ 1 + 0

2 , so P (0) holds.

Induction Hypothesis: Assume that H2j ≥ 1 + j
2 for some arbitrary integer j ∈ N.

Induction Step: Goal: Show H2j+1 ≥ 1 +
j + 1

2
Now

H2j+1 =

2j+1∑
k=1

1

k

=
2j∑
k=1

1

k
+

2j+1∑
k=2j+1

1

k

≥ 1 +
j

2
+

2j+1∑
k=2j+1

1

k
[Induction Hypothesis]

≥ 1 +
j

2
+ 2j · 1

2j+1
[There are 2j terms in [2j + 1,2j+1] and each is at least 1

2j+1
]

≥ 1 +
j

2
+

2j

2j+1

≥ 1 +
j

2
+

1

2

≥ 1 +
j + 1

2

So P (j) → P (j + 1) for an arbitrary integer j ∈ N.
Conclusion: P (n) holds for all integers n ∈ N by induction.

Strong Induction
(a) Prove that, for all n ∈ N, every n has an unsigned binary representation.

Solution:
Let P (n) be “n has an unsigned binary representation”. We will prove P (n) for all integers n ∈ N by
induction.

Base Case (n = 0): The unsigned binary representation of 0 is 02, so P (0) holds.
Induction Hypothesis: Assume that P (j) holds for all integers 0 ≤ j ≤ k for some arbitrary k ∈ N.

Induction Step: Goal: Show P (k + 1) has an unsigned binary representation
Let 2` be the largest power of two not greater than k + 1 (i.e. ` = blog2(n)c). Let r = k + 1− 2`,
the remainder.
Note that r < 2` < k, so r has some binary representation r2 [by the Induction Hypothesis].
Then 1r2 is the binary expansion for k + 1.
So P (0) ∧ P (1) ∧ · · · ∧ P (k) → P (k + 1) for some arbitrary k ∈ N.

Conclusion: P (n) holds for all integers n ∈ N by induction.
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(b) Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the
function f :

f(0) = 0

f(1) = 1

f(n) = 2f(n− 1)− f(n− 2)

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n.

Solution:
Let P (n) be “f(n) = n". We prove that P (n) is true for all n ∈ N by strong induction on n.

Base Cases (n = 0, n = 1): f(0) = 0 and f(1) = 1 by definition.
Induction Hypothesis: Assume that P (0) ∧ P (1) ∧ . . . P (n − 1) are true for some fixed but arbitrary

n− 1 ≥ 1.
Induction Step: We show P (n):

f(n) = 2f(n− 1)− f(n− 2) [Definition of f ]
= 2(n− 1)− (n− 2) [Induction Hypothesis]
= n [Algebra]

Therefore, P (n) is true for all n ∈ N.
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