CSE 311: Foundations of Computing |

Section 5: Number Theory & Induction Solutions

0. More Number Theory

(a) Prove that if n2 + 1 is a perfect square, where n is an integer, then n is even.

Solution:
Suppose n? + 1 is a perfect square. Then, by definition of perfect square, n?> + 1 = k? for some k € N.
Since n and k are integers, we can define some integer z such that k = n + z. Now, substituting, we get:
n?4+1=(n+z)>
n?+1=n’+2nz + 2

1=2nz+ 2°
1=2z(2n+ 2)
1

(9

p (2n + 2)

Since n and z are integers, 2n + z is an integer, which means % is an integer. The only integers which

satisfy this constraint are z = £1, and in both these cases z = % so we can subtract z from both sides
to find n = 0 as the only solution. Since n =0, and 0 is even, n is even.

(b) Prove that if n is a positive integer such that the sum of the divisors of n is n + 1, then n is prime.

Solution:

Note that n | n. If the sum of divisors of n is n 4 1, then n + 1 — n = 1 must be the only other divisor.
It follows, by definition of prime, that n is prime.

1. Induction
(a) Prove for all n € N that if you have two groups of numbers, a1, - ,a, and by, -, by, such that
V(i € [n]). a; < b;, then it must be that:

n n
Z a; < Z b;
i—1 i—1

Solution:

Let P(n) be the statement: “For any two groups of numbers, aj,--- ,a, and by,--- ,b,, such that
V(i € [n]). a; < b;, it is true that:

n n

> a <) b

i=1 i=1

defined for all n € N. We prove that P(n) is true for all n € N by induction on n:



Base Case (n = 0). We know that:

i=1 i=1

So the claim is true for n = 0.

Induction Hypothesis. Suppose that P(k) is true for some k € N.

Induction Step. Let the groups of numbers aj,--- ,agy; and by, - ,bxr1 be two groups such that
a; < b; forall i e [k+ 1].
Note that
k+1 k
Z a; = Z a; + apy1 [Splitting the summation]
i=1 i=1
k
< Z bi + ak+1 [By IH]
i=1
k
< Z b; + bg11 [By Assumption]
i=1
k+1
< Z b; [Algebra]
i=1

Thus we have shown that if the claim is true for &, it is true for k + 1.

Therefore, we have shown P(n) is true for all n € N by induction.

(b) For any n € N, define S,, to be the sum of the squares of the first n positive integers, or

For all n € N, prove that S, = ¢n(n+1)(2n + 1).

Solution:

Let P(n) be the statement “S,, = %n(n +1)(2n + 1)" defined for all n € N. We prove that P(n) is true
for all n € N by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of
no terms, so we have a sum of 0. Thus, Sy = 0. Since é(O)(O +1)((2)(0) + 1) = 0, we know that
P(0) is true.

Induction Hypothesis. Suppose that P(k) is true for some k € N.



Induction Step. Examining Sj1, we see that

k+1 k
Spr1 =3 i* =) ?+ (k+1)> =8, + (k+1)°
=1 =1

By the induction hypothesis, we know that Sy, = £k(k + 1)(2k + 1). Therefore, we can substitute
and rewrite the expression as follows:

Spr1 = Sk + (k+1)2

_ ék(“ 1)(2k +1) + (k +1)?

=(k+1) (ék(% + 1)+ (k+ 1)>

- é(k: +1) (k(2k + 1) +6(k + 1))

— é(kz—i— 1) (2k* + 7k + 6)

_ %(m 1)(k +2)(2k +3)

= Sk D+ )+ D@+ 1) +1)
Thus, we can conclude that P(k + 1) is true.

Therefore, because the base case and induction step hold, P(n) is true for all n € N by induction.

n(n—i—l)'

Define the triangle numbers as A\, = 1+2+- - -+n, where n € N. We showed in lecture that A, = ==

Prove the following equality for all n € N:

3 _ A2
0= A5

n
=0

Solution:

2
n n n

First, note that A, = Zz So, we are trying to prove Zi?’ = ( z) .
=0

=0 i=0
Let P(n) be the statement:

We prove that P(n) is true for all n € N by induction on n.

Base Case. 0% = 02, so P(0) holds.
Induction Hypothesis. Suppose that P(k) is true for some k € N.



Induction Step. We show P(k + 1):

k+1

k
it => "+ (k4 1)
1=0 z:lk )
= <Zz> + (k+1)°

= (k+1)? f k+1>

<
k+12< 4k+4)
( (k+2) >
<:1+ 12(1<; >

()

Therefore, P(n) is true for all n € N by induction.

= (k+1)*

[Take out a term]

[Induction Hypothesis]

[Substitution from part (a)]
[Factor (k + 1)?]
[Add via comon denominator]

[Factor numerator]

[Take out the square]

[Substitution from part (a)]



