
CSE 311: Foundations of Computing I
Section 10: Final Exam Review Solutions

0. Induction
Let fn and gn be defined as:

f0 = 0

f1 = 1

f2 = 1

fn = f(n− 1) + f(n− 2) + f(n− 3)

g0 = 0

g1 = 1

gn = g(n− 1) + g(n− 2)

Prove that fn ≤ 3n for all n ≥ 0 and fn ≥ gn for all n ≥ 2 by strong induction.
Solution:
fn ≤ 3n:

Case n = 0: Note, f0 = 0 ≤ 1 = 30

Case n = 1: Note, f1 = 1 ≤ 3 = 31

Case n = 2: Note, f2 = 1 ≤ 9 = 32

Case n > 2: Suppose that fi ≤ 3i for all 0 ≤ i ≤ k for some k ≥ 2. Note that:

fk+1 = fk + fk−1 + fk−2 [By Definition of f]
≤ 3k + 3k−1 + 3k−2 [By IH]
≤ 3k + 3k + 3k

= 3k+1

Thus, the claim is true for all n ≥ 0 by structural induction.
fn ≥ gn: For this proof, we take a moment to prove that fn is non-negative.

Case n = 0: f0 = 0 ≥ 0

Case n = 1: f1 = 1 ≥ 0

Case n = 2: f2 = 1 ≥ 0

Case n > 2: Suppose that fi ≥ 0 for all 0 ≤ i ≤ k for some k ≥ 2. Note that fk+1 = fk + fk−1 + fk−2 by
definition of f . We can also note fk ≥ 0, fk−1 ≥ 0, and fk−2 ≥ 0 by IH, so therefore, fk+1 ≥ 0.

Thus, the claim that fn is non-negative is true by strong induction. Now we move on to the real claim we want
to prove.

Case n = 0: Note, f0 = 0 ≥ 0 = g0

Case n = 1: Note, f1 = 1 ≥ 1 = g1
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Case n = 2: Note, f2 = 1 ≥ 0 + 1 = g0 + g1 = g2

Case n > 2: Suppose that fi ≥ gi for all 0 ≤ i ≤ k for some k ≥ 2. Note that:
fk+1 = fk + fk−1 + fk−2 [By Definition of f]

≥ gk + gk−1 + fk−2 [By IH]
≥ gk + gk−1 + 0 [By earlier proof]
= g(k + 1) [By Definition of g]

Thus, the claim is true.

1. Structural Induction
Consider some new programs on lists:

in(a, []) = false
in(a, b :: S) = if a = b then true else in(a, S)

set([]) = []

set(a :: S) = not in(a, S) and set(S)

append(a, []) = a :: []

append(a, b :: L) = b :: append(a, L)

rev([]) = []

rev(a :: L) = append(a, rev(L))

getAll(a, []) = []

getAll(a, b :: L) = if a = b then b :: getAll(a, L) else getAll(a, L)
Suppose that for arbitrary p, q, and list L, getAll(p, q :: L)) = getAll(p, append(q, L)). Prove that if set(L),
then getAll(a, L) = getAll(a, rev(L)) for all lists L and elements a.
Solution:
Let L be an arbitrary list. We prove the claim via structural induction.
Case: L = []: Let a be an arbitrary element. Note that:

getAll(a, []) = [] [Definition of getAll]
= getAll(a, []) [Definition of getAll]
= getAll(a, rev([])) [Definition of rev]

So, the claim holds for L = [].
Case: L = b :: L′. Let a be an arbitrary element. Suppose the claim holds for L′. Suppose set(b :: L′).
Note that by definition of set, not in(b, L′) and set(L′). Since set(L′), our IH can simplify to getAll(a, L′) =
getAll(a, rev(L′)). We go by cases:
Case: a = b: Note that:

getAll(a, b :: L′) = b :: getAll(a, L′) [Definition of getAll]
= b :: getAll(a, rev(L′)) [IH]
= getAll(a, b :: rev(L′)) [Definition of getAll]
= getAll(a, append(b, rev(L′))) [Supposition]
= getAll(a, rev(b :: L′)) [Definition of rev]
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So the claim holds when a = b.
Case: a 6= b: Note that:

getAll(a, b :: L′) = getAll(a, L′) [Definition of getAll]
= getAll(a, rev(L′)) [IH]
= getAll(a, b :: rev(L′)) [Definition of getAll, a 6= b]
= getAll(a, append(b, rev(L′))) [Supposition]
= getAll(a, rev(b :: L′)) [Definition of rev]

So the claim holds for a 6= b. So, we’ve shown the claim holds for all cases of L, so we have proven the claim
for all lists L and elements a by structural induction.

2. Regular Expressions, CFGs, and FSMs
Let Σ = {H, J, K, L}. Let the language L be defined for Σ∗ such that w ∈ L iff w:

• starts with K and ends with L or starts with L and ends with K

• has exactly one J between any two (not necessarily consecutive) occurrences of K

• has exactly one H between any two (not necessarily consecutive) occurrences of L

(a) Write a regular expression that matches L.

Solution:

K(JK ∪ LH ∪ JLKH ∪ JLHK ∪ LJHK ∪ LJKH ∪ ε)∗L

∪
L(KJ ∪ HL ∪ KHJL ∪ KHLJ ∪ HKLJ ∪ HKJL ∪ ε)∗K

(b) Construct a CFG that generates L.

Solution:

S → KT1L | LT2K

T1 → JKT1 | LHT1 | JLKHT1 | JLHKT1 | LJHKT1 | LJKHT1 | ε
T2 → KJT2 | HLT2 | KHJLT2 | KHLJT2 | HKLJT2 | HKJLT2 | ε

(c) Construct an NFA that accepts L.

Solution:

q0 q1

q2 q3

L

K

H

KJ

L

H

J
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3. DFA Minimization
Minimize the following DFA:

q0 q1 q2

q3 q4

1

0

1

0

0,1

0

1

1

0

Solution:

q0 q1

q2 ;_;

1

0

1

0

0

1

0,1

4. Irregularity
Let Σ = {A,C,G, T}. Let w be defined for a string w ∈ Σ∗ such that for each character wi, the character wi

is the complement of wi. C and G are complements of each other, as are A and T . Prove that {ww ∈ Σ∗} is
not regular.
Solution:
Let L = {ww : w,w ∈ Σ∗}. Let D be an arbitrary DFA, and suppose for contradiction that D accepts L.
Consider S = {An : n ≥ 0}. Since S contains infinitely many strings and D has a finite number of states, two
strings in S must end up in the same state. Say these strings are Ai and Aj for some i, j ≥ 0 such that i 6= j.
Append the string T i to both of these strings. The two resulting strings are:

a = AiT i Note that a ∈ L, since T i = Ai, thus we can choose w = Ai and write a as ww.

b = AjT i Note that b 6∈ L, since the length of Aj 6= the length of T i, thus T i 6= Aj .

Since a and b end up in the same state, but a ∈ L and b 6∈ L, that state must be both an accept and reject
state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not regular.
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5. Diagonalization
Here is a “proof” that the positive rationals are uncountable.

Suppose for contradiction that the positive rationals Q+ are countable. Then there exists some
listing of all elements Q+ = {q1, q2, q3, . . . }. Note that each of these rationals qi can also be written
as an infinite decimal expansion. We define a new number X ∈ Q+ by flipping the diagonals of
Q+; we set the ith digit of X to 7 if the ith digit of qi is a 4, otherwise we set the digit to 4. This
means that X differs from every qi on the ith digit, so X cannot be one of qi. Therefore our listing
for Q+ was incomplete, which is a contradiction. Since the above proof works for any listing of the
positive rationals Q+, no listing can be created for Q+, and therefore Q+ is uncountable.

What is the key error in this proof?

Solution:
X is not guaranteed to be a rational number (in fact, it almost certainly isn’t), so X does not need to be in
our listing of Q+ for our listing to be complete, so there is no contradiction.

6. Cardinality
(a) You are a pirate. You begin in a square on a 2D grid which is infinite in all directions. In other words,

wherever you are, you may move up, down, left, or right. Some single square on the infinite grid has
treasure on it. Find a way to ensure you find the treasure in finitely many moves.

Solution:
Explore the square you are currently on. Explore the unexplored perimeter of the explored region until
you find the treasure (your path will look a bit like a spiral).

(b) Prove that {3x : x ∈ N} is countable.

Solution:
We can enumerate the set as follows:

f(0) = 0

f(1) = 3

f(2) = 6

f(i) = 3i

Since every natural number appears on the left, and every number in S appears on the right, this enu-
meration spans both sets, so S is countable.

(c) Prove that the set of irrational numbers is uncountable.
Hint: Use the fact that the rationals are countable and that the reals are uncountable.

Solution:
We first prove that the union of two countable sets is countable. Consider two arbitrary countable sets C1

and C2. We can enumerate C1 ∪ C2 by mapping even natural numbers to C1 and odd natural numbers
to C2.
Now, assume that the set of irrationals is countable. Then the reals would be countable, since the reals
are the union of the irrationals (countable by assumption) and the rationals (countable). However, we
have already shown that the reals are uncountable, which is a contradiction. Therefore, our assumption
that the set of irrationals is countable is false, and the irrationals must be uncountable.

(d) Prove that P(N) is uncountable.
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Solution:
Assume for the sake of contradiction that P(N) is countable.
This means we can define an enumeration of elements Si in P.
Let si be the binary set representation of Si in N. For example, for the set 0, 1, 2, the binary set
representation would be 111000 . . .
We then construct a new subset X ⊂ N such that x[i] = si[i] (that is, x[i] is 1 if si[i] is 0, and x[i] is 0
otherwise).
Note that X is not any of Si, since it differs from Si on the ith natural number. However, X still
represents a valid subset of the natural numbers, which means our enumeration is incomplete, which is a
contradiction. Since the above proof works for any listing of P(N), no listing can be created for P(N),
and therefore P(N) is uncountable.

7. Relations
Recall the following definitions of a relation R on A:

R is reflexive iff (a, a) ∈ R for every a ∈ A.

R is symmetric iff (a, b) ∈ R implies (b, a) ∈ R.

R is anti-symmetric iff (a, b) ∈ R and (b, a) ∈ R implies a = b.

R is transitive iff (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R.

(a) Suppose that R is reflexive. Prove that R ⊆ R2.

Solution:
Suppose (a, b) ∈ R. Since R is reflexive, we know (b, b) ∈ R as well. Since there is a b such that
(a, b) ∈ R and (b, b) ∈ R, it follows that (a, b) ∈ R2. Thus, R ⊆ R2.

(b) Consider the relation R = {(x, y) : x = y + 1} on N. Is R reflexive? Transitive? Symmetric?
Anti-symmetric?

Solution:
It isn’t reflexive, because 1 6= 1 + 1; so, (1, 1) 6∈ R. It isn’t symmetric, because (2, 1) ∈ R (because
2 = 1 + 1), but (1, 2) 6∈ R, because 1 6= 2 + 1. It isn’t transitive, because note that (3, 2) ∈ R and
(2, 1) ∈ R, but (3, 1) 6∈ R. It is anti-symmetric, because consider (x, y) ∈ R such that x 6= y. Then,
x = y + 1 by definition of R. However, (y, x) 6∈ R, because y = x− 1 6= x+ 1.

R is transitive iff (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R.

(c) Suppose that R is reflexive. Prove that R ⊆ R2.

Solution:
Suppose (a, b) ∈ R. Since R is reflexive, we know (b, b) ∈ R as well. Since there is a b such that
(a, b) ∈ R and (b, b) ∈ R, it follows that (a, b) ∈ R2. Thus, R ⊆ R2.

(d) Consider the relation R = {(x, y) : x = y + 1} on N. Is R reflexive? Transitive? Symmetric?
Anti-symmetric?
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Solution:
It isn’t reflexive, because 1 6= 1 + 1; so, (1, 1) 6∈ R. It isn’t symmetric, because (2, 1) ∈ R (because
2 = 1 + 1), but (1, 2) 6∈ R, because 1 6= 2 + 1. It isn’t transitive, because note that (3, 2) ∈ R and
(2, 1) ∈ R, but (3, 1) 6∈ R. It is anti-symmetric, because consider (x, y) ∈ R such that x 6= y. Then,
x = y + 1 by definition of R. However, (y, x) 6∈ R, because y = x− 1 6= x+ 1.

(e) Consider the relation S = {(x, y) : x2 = y2} on R. Prove that S is reflexive, transitive, and symmetric.

Solution:
Consider x ∈ R. Note that by definition of equality, x2 = x2; so, (x, x) ∈ R; so, R is reflexive.

Consider (x, y) ∈ R. Then, x2 = y2. It follows that y2 = x2; so, (y, x) ∈ R. So, R is symmetric.
Suppose (x, y) ∈ R and (y, z) ∈ R. Then, x2 = y2, and y2 = z2. Since equality is transitive, x2 = z2.
So, (x, z) ∈ R. So, R is transitive.

8. Uncomputability
(a) Let Σ = {0, 1}. Prove that the set of palindromes is decidable.

Solution:
The following CFG recognizes all binary palindromes:

S → 0S0 | 1S1 | 1 | 0 | ε

Since a CFG exists which recognizes the set of binary palindromes, this set is at most context-free, and
therefore decidable.

(b) Prove that the set {(CODE(P ), x, y) : P is a program and P (x) 6= P (y)} is undecidable.

Solution:
Let S be the set {(CODE(P ), x, y) : P is a program and P (x) 6= P (y)}. Assume for the sake of contra-
diction that S is decidable. Then there exists some program Q(String input, String x, String y)
which returns true iff (CODE(P ), x, y) ∈ S.

Let H() be some arbitrary program. We will show that we can use Q to determine if H halts.

We first write a program I(String input) that incorporates the code of H:

String I(String input) {
if (input.equals("kittens")) {

// Run forever
while (true) {
}

} else {
// Execute H
<Code of H>

}
}
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Note that this program will always run forever when the input is “kittens” OR H runs forever, but will
otherwise return whatever H returns.
Now, we can write DOESHHALT():

boolean DOESHHALT() {
return Q(CODE(I),"kittens","bunnies");

}

If Q(CODE(I),"kittens","bunnies") returns true, then I("kittens") 6= I("bunnies"), so H does
not run forever, so H halts.

If Q(CODE(I),"kittens","bunnies") returns false, then I("kittens") = I("bunnies"), so H runs
forever, so H does not halt.

Since H was arbitrary, we can construct a program using Q() like DOESHHALT() for any program, which
allows us to decide the halting set. Since we can use Q to decide the halting set, but the halting set is
undecidable, Q cannot exist.
Since Q was an arbitrary function that decides S, no function that decides S can exist, and therefore S is
undecidable.
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