CSE 311: Foundations of Computing I

QuickCheck: NFAs, Minimization, Irregular Languages Solutions (due Thursday, May 26)

0 . Irregularity

Let $\Sigma=\{0,1\}$. Prove that the set $\left\{w w: w \in \Sigma^{*}\right\}$ is irregular.
Solution:
Let $L=\left\{w w: w \in \Sigma^{*}\right\}$. Let D be an arbitrary DFA, and suppose for contradiction that D accepts L. Consider $S=\left\{10^{n}: n \geq 0\right\}$. Since S contains infinitely many strings and D has a finite number of states, two strings in S must end up in the same state. Say these strings are 10^{i} and 10^{j} for some $i, j \geq 0$ such that $i \neq j$. Append the string 10^{i} to both of these strings. The two resulting strings are:
$a=10^{i} 10^{i}$ Note that $a \in L$, since we can choose $w=10^{i}$ and write a as $w w$.
$b=10^{j} 10^{i}$ Note that $b \notin L$, since the first half of b starts with 1 but the second half cannot.
Since a and b end up in the same state, but $a \in L$ and $b \notin L$, that state must be both an accept and reject state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not regular.

