
CSE 311: Foundations of Computing I
Section 7: Structural Induction and Regular Expressions

0. Structural Induction
(a) Consider the recursive definition of a tree:

Tree = Nil | Tree(Integer,Tree,Tree)

And the definition of “size" on trees:
size(Nil) = 0

size(Tree(x, L,R)) = 1 + size(L) + size(R)

And the definition of “height" on trees:

height(Nil) = 0

height(Tree(x, L,R)) = 1 +max(height(L), height(R))

Prove that size(T) ≤ 2height(T)+1 − 1 for all Trees T .

(b) In this problem, we will use the same definitions for Tree defined above. Now, consider the definition of
“mirror" on trees:

mirror(Nil) = Nil

mirror(Tree(x, L,R)) = Tree(x,mirror(R),mirror(L))

Prove that size(T) = size(mirror(T)) for all Trees T by structural induction.

1. Meta-mathematical
Consider the following, simplified, recursive definition of an arithmetic expression:

Expr = Natural | VarName(String) | Sum(Expr,Expr) | Prod(Expr,Expr)

And the definition of “eval" on expressions:

eval(x) = x

eval(VarName(s)) = eval(lookup(s))
eval(Sum(L,R)) = eval(L) + eval(R)

eval(Prod(L,R)) = eval(L)× eval(R)

Note that “lookup" is a function that returns an Expr corresponding to the given string (which represents a
variable name). You may assume “lookup" will always return an Expr – that is, we assume all variables are
defined. For simplicity, we omit the definition of this function.

Now, consider the definition of “replace" on expressions:

replace(t, r, x) = x

replace(t, r, VarName(s)) = if s = t then r else VarNames

replace(t, r, Sum(L,R)) = Sum(replace(t, r, L), replace(t, r, R))

replace(t, r, Prod(L,R)) = Prod(replace(t, r, L), replace(t, r, R))

Let a be an arbitrary string. Suppose eval(lookup(a)) ≥ 0. Let F = Sum(VarName(a), 1).

(a) Prove that eval(VarName(a)) ≤ eval(F).

1

(b) Prove that for any arbitrary Expr E that eval(E) ≤ eval(replace(a, F,E)).

2. Regular Expressions
(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the
substring “000”.

(d) Write a regular expression that matches all binary strings that have at least two 0’s.

(e) Write a regular expression that matches all strings of DNA letters (A, C, G, T) which have letters in
alphabetical order, but have at most 3 of the 4 letters (repeating of the same letter is allowed).

(f) Write a regular expression that matches all strings of DNA letters (A, C, G, T) which contain (as a
substring) a pair of consecutive G’s followed by either an A or T followed by a pair of consecutive C’s.

2

