
CSE 311: Foundations of Computing I
Section 7: Structural Induction and Regular Expressions Solutions

0. Structural Induction
(a) Consider the recursive definition of a tree:

Tree = Nil | Tree(Integer,Tree,Tree)

And the definition of “size" on trees:

size(Nil) = 0

size(Tree(x, L,R)) = 1 + size(L) + size(R)

And the definition of “height" on trees:

height(Nil) = 0

height(Tree(x, L,R)) = 1 +max(height(L), height(R))

Prove that size(T ) ≤ 2height(T )+1 − 1 for all Trees T .

Solution:
We go by structural induction. Let T be a tree.

Case T = Nil. Note that size(Nil) = 0 ≤ 1 = 20+1 − 1 = 2height(Nil)+1 − 1.
Case T = Tree(x, L,R). Suppose that size(L) ≤ 2height(L)+1−1 and size(R) ≤ 2height(R)+1−1 for some

trees L and R.
Note that:

size(Tree(x, L,R)) = 1 + size(L) + size(R) [Definition of size]
≤ 1 + 2height(L)+1 − 1 + 2height(R)+1 − 1 [By IH]
≤ 1 + 2max(height(L),height(R))+1 − 1

+ 2max(height(L),height(R))+1 − 1 [By max]

≤ 2
(
2max(height(L),height(R)+1

)
− 1 [Distributivity]

≤ 2
(
2height(Tree(x,L,R))

)
− 1 [Definition of height]

≤ 2height(Tree(x,L,R))+1 − 1 [Properties of exponents]

Thus, the claim is true for all Trees by structural induction.

(b) In this problem, we will use the same definitions for Tree defined above. Now, consider the definition of
“mirror" on trees:

mirror(Nil) = Nil

mirror(Tree(x, L,R)) = Tree(x,mirror(R),mirror(L))

Prove that size(T ) = size(mirror(T )) for all Trees T by structural induction.
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Solution:
Case T = Nil. Note that size(Nil) = 0 = size(mirror(Nil)).
Case T = Tree(x, L,R). Suppose that size(L) = size(mirror(L)) and size(R) = size(mirror(R)) for

some trees L and R. Note that:

size(Tree(x, L,R)) = 1 + size(L) + size(R) [Definition of size]
= 1 + size(mirror(L)) + size(mirror(R)) [By IH]
= 1 + size(mirror(R)) + size(mirror(L)) [Commutivity]
= size(Tree(x,mirror(R),mirror(L))) [Definition of size]
= size(mirror(Tree(x, L,R))) [Definition of mirror]

Thus, the claim is true for all Trees by structural induction.

1. Meta-mathematical
Consider the following, simplified, recursive definition of an arithmetic expression:

Expr = Natural | VarName(String) | Sum(Expr,Expr) | Prod(Expr,Expr)

And the definition of “eval" on expressions:

eval(x) = x

eval(VarName(s)) = eval(lookup(s))
eval(Sum(L,R)) = eval(L) + eval(R)

eval(Prod(L,R)) = eval(L)× eval(R)

Note that “lookup" is a function that returns an Expr corresponding to the given string (which represents a
variable name). You may assume “lookup" will always return an Expr – that is, we assume all variables are
defined. For simplicity, we omit the definition of this function.

Now, consider the definition of “replace" on expressions:

replace(t, r, x) = x

replace(t, r, VarName(s)) = if s = t then r else VarNames

replace(t, r, Sum(L,R)) = Sum(replace(t, r, L), replace(t, r, R))

replace(t, r, Prod(L,R)) = Prod(replace(t, r, L), replace(t, r, R))

Let a be an arbitrary string. Suppose eval(lookup(a)) ≥ 0. Let F = Sum(VarName(a), 1).

(a) Prove that eval(VarName(a)) ≤ eval(F ).

Solution:
We wish to show that eval(VarName(a)) ≤ eval(F ). Note that:

eval(VarName(a)) ≤ eval(VarName(a)) + 1 [Properties of inequalities]
= eval(VarName(a)) + eval(1) [Definition of eval]
= eval(Sum(VarName(a), 1)) [Definition of eval]
= eval(F ) [Variable substitution]

So our claim is proven.

(b) Prove that for any arbitrary Expr E that eval(E) ≤ eval(replace(a, F,E)).
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Solution:
Let E be an arbitrary Expr. We go by structural induction on E.

Case E = x.
Note that eval(x) ≤ x ≤ eval(x) ≤ eval(replace(a, F, x)).

Case E = VarName(s).
We go by cases.
Consider the case where s = a. In this case, note that

eval(VarName(a)) ≤ eval(F ) [By part a]
= eval(if a = a then F else VarName(s)) [Semantics of if statements]
= eval(replace(a, F, VarName(s))) [Definition of replace]

Consider the case where s 6= a. In this case, note that
eval(VarName(a)) ≤ eval(if s = a then F else VarName(s)) [Semantics of if statements]

= eval(replace(a, F, VarName(s))) [Definition of replace]

Case E = Sum(L,R).
IH: Suppose eval(L) ≤ eval(replace(a, F, L)) and suppose eval(R) ≤ eval(replace(a, F,R)) for some
expressions L and R.
Note that:
eval(Sum(L,R)) = eval(L) + eval(R) [Definition of eval]

≤ eval(replace(a, F, L)) + eval(replace(a, F,R)) [By IH and inequality addition]
= eval(Sum(replace(a, F, L), replace(a, F,R))) [Definition of eval]
= eval(replace(a, F, Sum(L,R)) [Definition of replace]

Case E = Prod(L,R).
IH: Suppose eval(L) ≤ eval(replace(a, F, L)) and suppose eval(R) ≤ eval(replace(a, F,R)) for some
expressions L and R.
Note that:
eval(Prod(L,R)) = eval(L)× eval(R) [Definition of eval]

≤ eval(replace(a, F, L))× eval(replace(a, F,R)) [By IH and (positive) inequality mult.]
= eval(Prod(replace(a, F, L), replace(a, F,R))) [Definition of eval]
= eval(replace(a, F, Prod(L,R))) [Definition of replace]

Thus, the claim is true for all expressions by structual induction.

2. Regular Expressions
(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Solution:

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)
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(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the
substring “000”.

Solution:

(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)

(d) Write a regular expression that matches all binary strings that have at least two 0’s.

Solution:

(0 ∪ 1)∗01∗01∗(0 ∪ 1)∗

(e) Write a regular expression that matches all strings of DNA letters (A, C, G, T) which have letters in
alphabetical order, but have at most 3 of the 4 letters (repeating of the same letter is allowed).

Solution:

(A∗C∗G∗) ∪ (A∗G∗T∗) ∪ (A∗C∗T∗) ∪ (C∗G∗T∗)

(f) Write a regular expression that matches all strings of DNA letters (A, C, G, T) which contain (as a
substring) a pair of consecutive G’s followed by either an A or T followed by a pair of consecutive C’s.

Solution:

(A ∪ C ∪ G ∪ T)∗GG(A ∪ T)CC(A ∪ C ∪ G ∪ T)∗
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