
CSE 311: Foundations of Computing I
Section 5: Midterm Practice Solutions

0. Propositional Logic
(a) Is the following expression a contingency, contradiction, or tautology?

(p → q) ∧ (q → r) → (p → r)

Solution:
Tautology.

(b) Show that ¬p → (q → r) and q → (p ∨ r) are logically equivalent.

Solution:
Solution 1: Truth Table

p q r ¬p q → r ¬p → (p → r)

T T T F T T
T T F F F T
T F T F T T
T F F F T T
F T T T T T
F T F T F F
F F T T T T
F F F T T T

p q r p ∨ r q → (p ∨ r)

T T T T T
T T F T T
T F T T T
T F F T T
F T T T T
F T F F F
F F T F T
F F F F T

Since the last column is identical on both tables the two statements must be equivalent.

Solution 2: Formal Proof

¬p → (q → r) = ¬¬p ∨ (q → r) By Law of Implication
= p ∨ (q → r) By Double Negation
= p ∨ (¬q ∨ r) By Law of Implication
= (¬q ∨ r) ∨ p By Commutativity
= ¬q ∨ (r ∨ p) By Associativity
= ¬q ∨ (p ∨ r) By Commutativity
= q → (p ∨ r) By Law of Implication
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1. Predicate Logic
Let the domain of discourse be all plants and leaves. You may use the predicates HasLeaf(x, y) ::= “x has y as
a leaf”, Equals(x, y) ::= “x is the same object as y”, Leaf(x) ::= “x is a leaf” and Plant(x) ::= “x is a plant”,
IsPurple(x) be “x is purple”, IsGolden(x) be “x is golden”, and let the constant LuckyLeaf be the Lucky Leaf.

Translate the following sentences to predicate logic using quantifiers.
(a) Every plant has at least 2 leaves.

Solution:

∀x (Plant(x) → ∃y∃z (¬Equals(y, z) ∧ HasLeaf(x, y) ∧ HasLeaf(x, z)))

(b) Every plant has at most 2 leaves.

Solution:

∀x (Plant(x) →

∀a∀b∀c ((HasLeaf(x, a) ∧ HasLeaf(x, b) ∧ HasLeaf(x, c)) → (Equals(a, b) ∨ Equals(a, c) ∨ Equals(b, c))))

(c) There is exactly one plant that has no leaves.

Solution:

∃x (Plant(x) ∧ ¬(∃y(HasLeaf(x, y))) ∧ ∀z ((Plant(z) ∧ ¬(∃k (HasLeaf(z, k)))) → Equals(x, z)))

(d) If a plant has the Lucky Leaf, all other leaves on that plant are golden, but the Lucky Leaf is purple, and
then no other plants have golden or purple leaves.

Solution:

IsPurple(LuckyLeaf) ∧ ∀x (Plant(x) ∧ HasLeaf(x, LuckyLeaf) →

∀y ((HasLeaf(x, y) ∧ ¬Equal(y, LuckyLeaf)) →

IsGolden(y)) ∧ ∀z ((Plant(z) ∧ ¬Equal(x, z)) →

∀k (HasLeaf(z, k) → (¬IsPurple(k) ∧ ¬IsGolden(k)))))

2. Proofs with Number Theory
(a) Prove that if n2 + 1 is a perfect square, where n is an integer, then n is even.
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Solution:
Let n be an arbitrary integer, and suppose n2 + 1 is a perfect square. Then, by definition of perfect
square, n2 + 1 = k2 for some k ∈ N. Since n and k are integers, we can define some integer z such that
k = n+ z. Now, substituting, we get:

n2 + 1 = (n+ z)2

n2 + 1 = n2 + 2nz + z2

1 = 2nz + z2

1 = z(2n+ z)

1

z
= (2n+ z)

Since n and z are integers, 2n + z is an integer, which means 1
z is an integer. The only integers which

satisfy this constraint are z = ±1, and in both these cases z = 1
z , so we can subtract z from both sides

to find n = 0 as the only solution. Since n = 0, and 0 is even, n is even.

(b) Prove that if n is a positive integer such that the sum of the divisors of n is n+ 1, then n is prime.

Solution:
Let n be an arbitrary positive integer, and suppose the sum of the divisors of n is n+1. Note that n | n.
Since the sum of divisors of n is n + 1, n + 1 − n = 1 must be the only other divisor. It follows, by
definition of prime, that n is prime. Since we supposed n was a positive integer whose divisors sum to
n+ 1, we see that for any arbitrary positive integer n, if n’s divisors sum to n+ 1, n must be prime.

3. Induction
(a) Prove for all n ∈ N that if you have two groups of numbers, a1, · · · , an and b1, · · · , bn, such that

∀(i ∈ [n]). ai ≤ bi, then it must be that:

n∑
i=1

ai ≤
n∑

i=1

bi

Solution:
Let P(n) be the statement: “For any two groups of numbers, a1, · · · , an and b1, · · · , bn, such that
∀(i ∈ [n]). ai ≤ bi, it is true that:

n∑
i=1

ai ≤
n∑

i=1

b′′i

defined for all n ∈ N. We prove that P(n) is true for all n ∈ N by induction on n:
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Base Case (n = 0). We know that:

n∑
i=1

ai =

0∑
i=1

ai

= 0

≤ 0

=

0∑
i=1

bi

=

n∑
i=1

bi

So the claim is true for n = 0.
Induction Hypothesis. Suppose that P(k) is true for some k ∈ N.
Induction Step. Let the groups of numbers a1, · · · , ak+1 and b1, · · · , bk+1 be two groups such that

ai ≤ bi for all i ∈ [k + 1].
Note that

k+1∑
i=1

ai =
k∑

i=1

ai + ak+1 [Splitting the summation]

≤
k∑

i=1

bi + ak+1 [By IH]

≤
k∑

i=1

bi + bk+1 [By Assumption]

≤
k+1∑
i=1

bi [Algebra]

Thus we have shown that if the claim is true for k, it is true for k + 1.

Therefore, we have shown P(n) is true for all n ∈ N by induction.

(b) For any n ∈ N, define Sn to be the sum of the squares of the first n positive integers, or

Sn =
n∑

i=1

i2.

For all n ∈ N, prove that Sn = 1
6n(n+ 1)(2n+ 1).

Solution:
Let P(n) be the statement “Sn = 1

6n(n+ 1)(2n+ 1)” defined for all n ∈ N. We prove that P(n) is true
for all n ∈ N by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of
no terms, so we have a sum of 0. Thus, S0 = 0. Since 1

6(0)(0 + 1)((2)(0) + 1) = 0, we know that
P(0) is true.

Induction Hypothesis. Suppose that P(k) is true for some k ∈ N.
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Induction Step. Examining Sk+1, we see that

Sk+1 =
k+1∑
i=1

i2 =
k∑

i=1

i2 + (k + 1)2 = Sk + (k + 1)2.

By the induction hypothesis, we know that Sk = 1
6k(k + 1)(2k + 1). Therefore, we can substitute

and rewrite the expression as follows:

Sk+1 = Sk + (k + 1)2

=
1

6
k(k + 1)(2k + 1) + (k + 1)2

= (k + 1)

(
1

6
k(2k + 1) + (k + 1)

)
=

1

6
(k + 1) (k(2k + 1) + 6(k + 1))

=
1

6
(k + 1)

(
2k2 + 7k + 6

)
=

1

6
(k + 1)(k + 2)(2k + 3)

=
1

6
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

Thus, we can conclude that P(k + 1) is true.

Therefore, because the base case and induction step hold, P(n) is true for all n ∈ N by induction.

(c) Define the triangle numbers as 4n = 1 + 2 + · · ·+ n, where n ∈ N. Theorem: 4n = n(n+1)
2 .

Prove the following equality for all n ∈ N:
n∑

i=0

i3 = 42
n

Solution:

First, note that 4n =

n∑
i=0

i. So, we are trying to prove
n∑

i=0

i3 =

(
n∑

i=0

i

)2

.

Let P(n) be the statement:
n∑

i=0

i3 =

(
n∑

i=0

i

)2

We prove that P(n) is true for all n ∈ N by induction on n.

Base Case. When n = 0, we have 03 = 02, so P(0) holds.
Induction Hypothesis. Suppose that P(k) is true for some k ∈ N.
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Induction Step. We show P(k + 1):

k+1∑
i=0

i3 =
k∑

i=1

i3 + (k + 1)3 [Take out a term]

=

(
k∑

i=0

i

)2

+ (k + 1)3 [Induction Hypothesis]

=

(
k(k + 1)

2

)2

+ (k + 1)3 [Substitution from part (a)]

= (k + 1)2
(
k2

22
+ (k + 1)

)
[Factor (k + 1)2]

= (k + 1)2
(
k2 + 4k + 4

4

)
[Add via comon denominator]

= (k + 1)2
(
(k + 2)2

4

)
[Factor numerator]

=

(
(k + 1)(k + 2)

2

)2

[Take out the square]

=

(
k+1∑
i=0

i

)2

[Substitution from part (a)]

Therefore, P(n) is true for all n ∈ N by induction.

(d) Prove that 9 | n3 + (n+ 1)3 + (n+ 2)3 for all n > 1 by induction.

Solution:
Let P (n) be “9 | n3 + (n+ 1)3 + (n+ 2)3”. We will prove P (n) for all integers n > 1 by induction.

Base Case (n = 2): 23+(2+1)3+(2+2)3 = 8+27+64 = 99 = 9 · 11, so 9 | 23+(2+1)3+(2+2)3,
so P (2) holds.

Induction Hypothesis: Suppose that P (j) is true for some j > 1. Note that this is equivalent to
assuming that j3 + (j + 1)3 + (j + 2)3 = 9k for some integer k.

Induction Step: We want to show that 9 | (j +1)3 + (j +2)3 + (j +3)3. First, note that our induction
hypothesis P (j) is equivalent to assuming that j3 + (j + 1)3 + (j + 2)3 = 9k for some integer k.
Now

(j + 1)3 + (j + 2)3 + (j + 3)3 = (j + 3)3 + 9k − j3 for some integer k [Induction Hypothesis]
= j3 + 9j2 + 27j + 27 + 9k − j3

= 9j2 + 27j + 27 + 9k

= 9(j2 + 3j + 3 + k)

So 9 | (j + 1)3 + (j + 2)3 + (j + 3)3, so P (j) → P (j + 1) for some arbitrary integer j > 1. Thus,
P (n) holds for all naturals n > 1 by induction.

(e) Prove that 6n+ 6 < 2n for all n ≥ 6.
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Solution:
Let P (n) be “6n+ 6 < 2n”. We will prove P (n) for all integers n ≥ 6 by induction.

Base Case (n = 6): 6n+ 6 = 6 · 6 + 6 = 42 < 64 = 26 = 2n, so P (6) holds.
Induction Hypothesis: Suppose that P (j) is true for some j ≥ 6.
Induction Step: We want to show that 6(j + 1) + 6 < 2j+1

We have that

6(j + 1) + 6 = 6j + 6 + 6

< 2j + 6 [Induction Hypothesis]
< 2j + 2j [Since 2j > 6, since j ≥ 6]
< 2 · 2j

< 2j+1

So P (j) → P (j + 1) for an arbitrary integer j ≥ 6. Therefore, P (n) holds for all naturals n ≥ 6 by
induction.

(f) Define
Hi = 1 +

1

2
+ · · ·+ 1

i

Prove that H2n ≥ 1 + n
2 for n ∈ N.

Solution:
We define Hi more formally as

∑i
k=1

1
k . Let P (n) be “H2n ≥ 1 + n

2 ”. We will prove P (n) for all n ∈ N
by induction.

Base Case (n = 0): H2n = H20 = H1 =
∑1

k=1
1
k = 1 ≥ 1 + 0

2 = 1 + n
2 , so P (0) holds.

Induction Hypothesis: Suppose P (j) is true for some j ∈ N.
Induction Step: We want to show that H2j+1 ≥ 1 + j+1

2
Now

H2j+1 =

2j+1∑
k=1

1

k

=

2j∑
k=1

1

k
+

2j+1∑
k=2j+1

1

k

≥ 1 +
j

2
+

2j+1∑
k=2j+1

1

k
[Induction Hypothesis]

≥ 1 +
j

2
+ 2j · 1

2j+1
[There are 2j terms in [2j + 1,2j+1] and each is at least 1

2j+1
]

≥ 1 +
j

2
+

2j

2j+1

≥ 1 +
j

2
+

1

2

≥ 1 +
j + 1

2

So P (j) → P (j+1) for an arbitrary integer j ∈ N. Therefore, P (n) holds for all n ∈ N by induction.
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4. Set Proofs
Prove for any sets A and B, P ((A ∪B) \B) ⊆ P (A).
Solution:
Let A,B be arbitrary sets. Let X be an arbitrary element of P ((A ∪ B) \ B). Note that X ⊆ (A ∪ B) \ B
by the definition of powersets. Let x ∈ X be arbitrary. Then, by the definition of subsets x ∈ ((A ∪ B) \ B).
Note that, x ∈ (A ∪ B) ∧ x /∈ B by the definition of set difference. Then, ((x ∈ A ∨ x ∈ B) ∧ x /∈ B) by the
definition of set union. Then, it follows that x ∈ A∧x /∈ B. Then, it follows that x ∈ A. Since x was arbitrary,
by the definition of subsets X ⊆ A. Then by the definition of powersets X ∈ P (A). Since X was arbitrary, by
the definition of subsets P ((A ∪B) \B) ⊆ P (A).
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