CSE 311: Foundations of Computing |

Section 5: Midterm Practice Solutions

0. Propositional Logic
(a) Is the following expression a contingency, contradiction, or tautology?

=N (@—=r)= (@)

Solution:

Tautology.
(b) Show that =p — (¢ — r) and ¢ — (p V r) are logically equivalent.

Solution:
Solution 1: Truth Table

(plalr[w[a=r][-p=>(—r)]
T(T[T|F | T T
T(T|F|F | F T
T(F(T| F | T T
TI(FIF|F | T T
FIT (T | T | T T
FIT|F| T | F F
FIF [T | T | T T
FIF|F| T | T T
(plalr[pvrla—=(Vvr)]
T(T[T] T T
T(T | F| T T
T(F[T| T T
T(F|F| T T
FIT|T| T T
FIT|F| F F
FIF|T| F T
FIF|F| F T

Since the last column is identical on both tables the two statements must be equivalent.

Solution 2: Formal Proof

-p—(¢q—r)=-pV(g—T) By Law of Implication
=pV(qg—r) By Double Negation
=pV(-qVr) By Law of Implication
=(=qVr)Vp By Commutativity
=-qV(rVvp) By Associativity
=-qV(pVr) By Commutativity
=q—(pVr) By Law of Implication



1. Predicate Logic

Let the domain of discourse be all plants and leaves. You may use the predicates HaslLeaf(x,y) ::= "z has y as
a leaf"”, Equals(z,y) ::= "z is the same object as y", Leaf(z) ::= “z is a leaf” and Plant(x) ::= “x is a plant”,
IsPurple(x) be “z is purple”, IsGolden(x) be “x is golden”, and let the constant LuckyLeaf be the Lucky Leaf.

Translate the following sentences to predicate logic using quantifiers.
(a) Every plant has at least 2 leaves.

Solution:

Va (Plant(xz) — Jy3z (—=Equals(y, z) A HasLeaf(z, y) A HasLeaf(z, z)))
(b) Every plant has at most 2 leaves.

Solution:

Vz (Plant(z) —
VaVbVe ((HasLeaf(z,a) A HaslLeaf(x,b) A HaslLeaf(z, c)) — (Equals(a,b) V Equals(a, c) V Equals(b, c))))

(c) There is exactly one plant that has no leaves.

Solution:

Jz (Plant(z) A =(Jy(HasLeaf(z,y))) A Vz ((Plant(z) A =(3k (HasLeaf(z,k)))) — Equals(z, 2)))

(d) If a plant has the Lucky Leaf, all other leaves on that plant are golden, but the Lucky Leaf is purple, and
then no other plants have golden or purple leaves.

Solution:

IsPurple(LuckyLeaf) A Vz (Plant(z) A HasLeaf(x, LuckyLeaf) —
Vy ((HasLeaf(z,y) A —=Equal(y, LuckyLeaf)) —
IsGolden(y)) A Vz ((Plant(z) A =Equal(zx, z)) —

Vk (HasLeaf(z, k) — (—lIsPurple(k) A —lsGolden(k)))))

2. Proofs with Number Theory

(a) Prove that if n2+1lisa perfect square, where n is an integer, then n is even.



Solution:

Let n be an arbitrary integer, and suppose n? + 1 is a perfect square. Then, by definition of perfect
square, n? +1 = k? for some k € N. Since n and k are integers, we can define some integer z such that
k =n+ z. Now, substituting, we get:

n?+1=(n+z2)>?
n2+1=n%+2nz+ 22

1=2nz+ 22
1=2(02n+ z)
1

(2

. (2n+ 2)

Since n and z are integers, 2n + z is an integer, which means % is an integer. The only integers which

satisfy this constraint are z = £1, and in both these cases z = % so we can subtract z from both sides
to find n = 0 as the only solution. Since n =0, and 0 is even, n is even.

(b) Prove that if n is a positive integer such that the sum of the divisors of n is n + 1, then n is prime.

Solution:

Let n be an arbitrary positive integer, and suppose the sum of the divisors of n is n 4+ 1. Note that n | n.
Since the sum of divisors of nis n 4+ 1, n + 1 — n = 1 must be the only other divisor. It follows, by
definition of prime, that n is prime. Since we supposed n was a positive integer whose divisors sum to
n + 1, we see that for any arbitrary positive integer n, if n's divisors sum to n + 1, n must be prime.

3. Induction
(a) Prove for all n € N that if you have two groups of numbers, ai,- - ,a, and by, -, by, such that
V(i € [n]). a; < b;, then it must be that:

n n
Z a; < Z b;
i—1 i—1

Solution:

Let P(n) be the statement: “For any two groups of numbers, ai,--- ,a, and by,--- ,b,, such that
V(i € [n]). a; < by, it is true that:

n n

Sasd>u

i=1 i=1

defined for all n € N. We prove that P(n) is true for all n € N by induction on n:



Base Case (n = 0). We know that:

i=1 i=1

So the claim is true for n = 0.

Induction Hypothesis. Suppose that P(k) is true for some k € N.

Induction Step. Let the groups of numbers aj,--- ,agy; and by, - ,bxr1 be two groups such that
a; < b; forall i e [k+ 1].
Note that
k+1 k
Z a; = Z a; + apy1 [Splitting the summation]
i=1 i=1
k
< Z bi + ak+1 [By IH]
i=1
k
< Z b; + bg11 [By Assumption]
i=1
k+1
< Z b; [Algebra]
i=1

Thus we have shown that if the claim is true for &, it is true for k + 1.

Therefore, we have shown P(n) is true for all n € N by induction.

(b) For any n € N, define S,, to be the sum of the squares of the first n positive integers, or

For all n € N, prove that S, = ¢n(n+1)(2n + 1).

Solution:

Let P(n) be the statement “S,, = %n(n +1)(2n + 1)" defined for all n € N. We prove that P(n) is true
for all n € N by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of
no terms, so we have a sum of 0. Thus, Sy = 0. Since é(O)(O +1)((2)(0) + 1) = 0, we know that
P(0) is true.

Induction Hypothesis. Suppose that P(k) is true for some k € N.



Induction Step. Examining Sj1, we see that

k+1 k
Spr1 =3 i* =) ?+ (k+1)> =8, + (k+1)°
=1 =1

By the induction hypothesis, we know that Sy, = £k(k + 1)(2k + 1). Therefore, we can substitute
and rewrite the expression as follows:

Spr1 = Sk + (k+1)2

_ ék(“ 1)(2k +1) + (k +1)?

=(k+1) (ék(% + 1)+ (k+ 1)>

- é(k: +1) (k(2k + 1) +6(k + 1))

— é(kz—i— 1) (2k* + 7k + 6)

_ %(m 1)(k +2)(2k +3)

= Sk D+ )+ D@+ 1) +1)
Thus, we can conclude that P(k + 1) is true.

Therefore, because the base case and induction step hold, P(n) is true for all n € N by induction.

n(n+1)
5 -

Define the triangle numbers as A,, =142+ --- 4+ n, where n € N. Theorem: A, =
Prove the following equality for all n € N:

3 _ A2
0= A5

n
=0

Solution:

2
n n n

First, note that A, = Zz So, we are trying to prove Zi?’ = ( z) .
=0

=0 i=0
Let P(n) be the statement:

We prove that P(n) is true for all n € N by induction on n.

Base Case. When n = 0, we have 03 = 02, so P(0) holds.
Induction Hypothesis. Suppose that P(k) is true for some k € N.



Induction Step. We show P(k + 1):

k41
Zi3 = Zig +(k+1)° [Take out a term]
e\ 2
= <Z z) + (k+1)3 [Induction Hypothesis]
=0
k(k+1
= <(+)> + (k+1)3 [Substitution from part (a)]
(k+1)? <2 (k+1) ) [Factor (k + 1)?]
k? 4k 4
(k+1)2 < + ) [Add via comon denominator]
2)
(k+1)2 ( (k+ > [Factor numerator]
(k+ 1) (k+
( + ( > [Take out the square]
k41 0\ 2
= <Z 2) [Substitution from part (a)]
=0

Therefore, P(n) is true for all n € N by induction.
(d) Prove that 9 | n3 + (n + 1)3 + (n + 2)3 for all n > 1 by induction.

Solution:

Let P(n) be “9 | n® + (n 4+ 1)3 + (n + 2)3". We will prove P(n) for all integers n > 1 by induction.

Base Case (n=2): 22+ (2+1)°+(2+2)® =8427+64=99=19-11,509 | 2° + (24 1)3 + (2+2)?,
so P(2) holds.

Induction Hypothesis: Suppose that P(j) is true for some j > 1. Note that this is equivalent to
assuming that 52 4 (j +1)3 + (j + 2)® = 9k for some integer k.

Induction Step: We want to show that 9 | (j + 1)3 + (j +2)® + (j + 3). First, note that our induction
hypothesis P(j) is equivalent to assuming that j2 + (5 + 1)3 + (j + 2)® = 9k for some integer k.
Now

G+124+G+23+ (G+3) = (5 +3)% + 9k — 53 for some integer k [Induction Hypothesis]
= 73+ 952 4+ 275 4+ 27 4 9k — 53
=952 4275 + 27+ 9k
=9(j2 +3j +3+k)

So 9| (j+1)2+(+2)32+(j+3)3 so P(j) — P(j+ 1) for some arbitrary integer j > 1. Thus,
P(n) holds for all naturals n > 1 by induction.

(e) Prove that 6n +6 < 2" for all n > 6.



Solution:

Let P(n) be "6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction.
Base Case (n =6): 6n+6 =6-6+6 =42 < 64 = 26 = 2", 50 P(6) holds.
Induction Hypothesis: Suppose that P(j) is true for some j > 6.

Induction Step: We want to show that 6(j + 1) + 6 < 2771
We have that

6(j+1)+6=6j+6+6

<2946 [Induction Hypothesis]
<249 [Since 27 > 6, since j > 6]
<2.2

< 93t

So P(j) — P(j +1) for an arbitrary integer j > 6. Therefore, P(n) holds for all naturals n > 6 by
induction.

(f) Define

Prove that Hon > 1 + % for n € N.

Solution:

We define H; more formally as 2221 1. Let P(n) be “Hon > 1+ 2". We will prove P(n) for all n € N
by induction.

Base Case (n=0): Hyn=Hypo=H1 =3, _,+=1>1+3=1+12,s0 P(0) holds.
Induction Hypothesis: Suppose P(j) is true for some j € N.

Induction Step: We want to show that Hyj+1 > 1+ %
Now

] 1
>1+ J + Z Z [Induction Hypothesis]

1 , , . 1
>14%+2 . —— [There are 2/ terms in [2/ + 1,271 and each is at least W]

So P(j) — P(j+1) for an arbitrary integer j € N. Therefore, P(n) holds for all n € N by induction.



4. Set Proofs
Prove for any sets A and B, P((AUB)\ B) C P(A).
Solution:

Let A, B be arbitrary sets. Let X be an arbitrary element of P((A U B) \ B). Note that X C (AUB)\ B
by the definition of powersets. Let © € X be arbitrary. Then, by the definition of subsets = € ((AU B) \ B).
Note that, x € (AU B) A x ¢ B by the definition of set difference. Then, ((x € AV x € B) Ax ¢ B) by the
definition of set union. Then, it follows that x € AAx ¢ B. Then, it follows that 2 € A. Since = was arbitrary,
by the definition of subsets X C A. Then by the definition of powersets X € P(A). Since X was arbitrary, by
the definition of subsets P((AU B) \ B) C P(A).



