CSE 311: Foundations of Computing |

Section : Sets and Modular Arithmetic Solutions

0. How Many Elements?
For each of these, how many elements are in the set? If the set has infinitely many elements, say so.
(a) A={1,2,3,2}

Solution:
3

(b) B={{}, {{}} {HLUE UL U )

Solution:

B={{} {{L {LOL L0
=L 0 DL
={2.{9}}

So, there are two elements in B.
(c) C=Ax (BU{T})

Solution:

C={1,23} x{@,{2},7} ={(a,b) | a € {1,2,3},b € {@,{2},7}}. It follows that there are 3 x3 =9
elements in C.

(d) D=g
Solution:
0.

(e) E={o}
Solution:
1.

(f) FF=P{2})

Solution:
2! = 2. The elements are ' = {@, {@}}.



1. Set = Set

Prove the following set identities.
(a) Let the universal set be U/. Prove X = X for any set X.

Solution:
Let S be an arbitrary set. We want to prove that S = S,
S={z : x2z€S5}

={z : =(z €5)} [Negation]
={x : ~(x¢S)} [Definition of ¢]
={x : ~(x €S)} [Definition of 5]
={x : (x¢9)} [Definition of ¢]
={z :x€ ?} [Definition of ?]

It follows that S = §

(Note that if we did not have a universal set, this whole proof would be garbage.)
(b) Prove (A® B) @ B = A for any sets A, B.

Solution:

Let A and B be arbitrary sets.

(AeB)eB={z : x € (A® B)® B} [Set Comprehension]
={z : (rteA®z € B)® (x € B)} [Definition of @]
={z :2€A®(x€Bdx e B)} [Associativity of @]
={x :2ecAd(F)} [Definition of @]
={x : ze€ A} [Definition of @]

= [Set Comprehension]

It follows that (A ¢ B) & B = A.

(c) Prove AUB C AUBUC for any sets A, B, C.

Solution:

Let A, B, C be arbitrary sets. Let x be an arbitrary element in AU B.

re€AUB — (x€AUB)V(xel)
— ze€(AuB)UC [Definition of U]

Thus, sincex € AUB —» x € (AUB)UC, it follows that AU B C AU B UC, by definition of subset.

(d) Let the universal set be . Prove AN B C A\ B for any sets A, B.



Solution:

Let x be arbitrary. B o
reANB — xze€AANxze B [Definition of N

— x € ANz ¢ B [Definition of B]
— z€A\B [Definition of \]

Thus, sincez € ANB — x € A\ B, it follows that AN B C A\ B, by definition of subset.

2. Modular Arithmetic

(a)

Prove that if a | b and b | a, where a and b are integers, then a = b or a = —b.

Solution:
Suppose a | b and b | a, where a,b are integers. By the definition of divides, we have a # 0, b # 0 and
b = ka,a = jb for some integers k, j. Combining these equations, we see that a = j(ka).
1
Then, dividing both sides by a, we get 1 = jk. So, — = k. Note that j and k are integers, which is only
J
possible if j, k € {1,—1}. It follows that b = —a or b = a.

Prove that if n | m, where n and m are integers greater than 1, and if a =, b, where a and b are integers,
then a =, b.

Solution:

Suppose n | m with n,m > 1, and a = ,,,b. By definition of divides, we have m = kn for some k € Z. By
definition of congruence, we have m | a — b, which means that a — b = mj for some j € Z. Combining
the two equations, we see that a — b = (knj) = n(kj). By definition of congruence, we have a =,, b, as
required.

3. New Definitions

We say (M, %) is a magma iff V(x € M)V (y € M) zxy € M.
We say “e is a left-identity” in a magma (M, %), iff V(a € M) exa = a.

We say “e is a right-identity” in a magma (M, x), iff V(a € M) axe = a.

1 1

We say “x ™ is a right-inverse of x" in a magma (M, x), iff for all right-identities, e, in M,z xx~" = e.

Let (Q,A) be a magma. Prove that if a and b are both right-identities and all m € Q have right-inverses,
then a = b.

Solution:

Suppose a and b are both arbitrary right-identities. Let ¢ € Q be arbitrary. Furthermore, note that ¢ has
a right-inverse (call it ¢™'). We now show a = b via a series of equalities:

a = (cAc™h)  [c has a right-inverse]
=b [b is a right-identity]

Let (R,0) be an associative magma with a left and right identity e € R. Prove that for all a € R, if a

has a right inverse a~!, then (=)~ = a.



Solution:

Let @ € R be arbitrary. Suppose a~! € R is a right-inverse of a. We now show (a~!)~! = a via a series
of equalities:

(aHt=eO(@)™! [e is a left-identity]
=(e0a ) O(aH)™ [a!is a right-inverse of a]
=a0 (et 0 (@ H™Y) [associativity]
=ale [(a=1)!is a right-inverse of a™!]

=a [e is a right-identity]



