CSE 311: Foundations of Computing I

Section 2: Equivalences and Predicate Logic

0 . Equivalences

Prove that each of the following pairs of propositional formulae are equivalent using propositional equivalences.
(a) $(p \rightarrow q) \wedge(q \rightarrow p) \quad(p \wedge q) \vee(\neg p \wedge \neg q)$
(b) $\neg p \rightarrow(q \rightarrow r) \quad q \rightarrow(p \vee r)$

1. Non-equivalence

Prove that the following pairs of propositional formulae are not equivalent by finding inputs they differ on.
(a) $p \rightarrow q$

$$
q \rightarrow p
$$

(b) $p \rightarrow(q \wedge r) \quad(p \rightarrow q) \wedge r$

2. Boolean Algebra

For each of the following parts, write the logical expression using boolean algebra operators. Then, simplify it using axioms and theorems of boolean algebra.
(a) $\neg p \vee(\neg q \vee(p \wedge q))$
(b) $\neg(p \vee(q \wedge p))$

3. Canonical Forms

Consider the boolean functions $F(A, B, C)$ and $G(A, B, C)$ specified by the following truth table:

A	B	C	$F(A, B, C)$	$G(A, B, C)$
1	1	1	1	0
1	1	0	1	1
1	0	1	0	0
1	0	0	0	0
0	1	1	1	1
0	1	0	1	0
0	0	1	0	1
0	0	0	1	0

(a) Write the DNF and CNF expressions for $F(A, B, C)$.
(b) Write the DNF and CNF expressions for $G(A, B, C)$.

4. Translate to Logic

Express each of these English sentences into logical expressions using predicates, quantifiers, and logical connectives.
(a) A cuttlefish is poisonous only if it has spots and does not eat shrimp.
(b) Every sea creature has either fins or a shell, but not both, unless the sea creature is a cuttlefish.
(c) When a shark meets a fish, that shark will eat that fish only if it is not also a shark.

5. Translate to English

Translate these system specifications into English where $F(p)$ is "Printer p is out of service", $B(p)$ is "Printer p is busy", $L(j)$ is "Print job j is lost," and $Q(j)$ is "Print job j is queued". Let the domain be all printers and print jobs.
(a) $\exists p(F(p) \wedge B(p)) \rightarrow \exists j L(j)$
(b) $(\forall p B(p)) \rightarrow(\exists j Q(j))$
(c) $\exists j(Q(j) \wedge L(j)) \rightarrow \exists p F(p)$
(d) $(\forall p B(p) \wedge \forall j Q(j)) \rightarrow \exists j L(j)$

6. Quantifier Switch

Consider the following pairs of sentences. For each pair, determine if one implies the other (or if they are equivalent).
(a) $\forall x \forall y P(x, y) \quad \forall y \forall x P(x, y)$
(b) $\exists x \exists y P(x, y) \quad \exists y \exists x P(x, y)$
(c) $\forall x \exists y P(x, y) \quad \forall y \exists x P(x, y)$
(d) $\forall x \exists y P(x, y) \quad \exists x \forall y P(x, y)$

7. Positively Different

For $a \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$, show that (a) and (b) have different meanings.
(a) $\forall y((y>0) \rightarrow \exists z((z>0) \wedge((|x-a|<z) \rightarrow(|f(x)-f(a)|<y)))$
(b) $\exists z((z>0) \wedge \forall y((y>0) \rightarrow((|x-a|<z) \rightarrow(|f(x)-f(a)|<y)))$

8. $T R \forall N S L \forall T O R$

Express each of these sentences using predicates, quantifiers, and logical connectives. Make sure to define a domain for each part.
(a) There are at least two fluffy dogs in every happy house.
(b) If there is a new book or a cheap book by my favorite author in the bookstore, then I will buy it.
(c) All parks have at least one duck pond with more than one duck.

