
CSE 311: Foundations of Computing I
Section 1: Logic Solutions

0. Exclusive Or
For each of the following, decide whether inclusive-or or exclusive-or is intended:

(a) Experience with C or Java is required.

Solution:
Inclusive Or.

(b) Lunch includes soup or salad.

Solution:
Exclusive Or.

(c) Publish or perish

Solution:
Exclusive Or.

(d) To enter the country you need a passport or voter registration card.

Solution:
Inclusive Or.

1. Translations
For each of the following, define propositional variables and translate the sentences into logical notation.

(a) I will remember to send you the address only if you send me an e-mail message.

Solution:
p : I will remember to send you the address
q : You send me an e-mail message

p → q

(b) If berries are ripe along the trail, hiking is safe if and only if grizzly bears have not been seen in the area.

Solution:
p : Berries are ripe along the trail
q : Hiking is safe
r : Grizzly bears have been seen in the area

p → (q ↔ ¬r)

(c) Unless I am trying to type something, my cat is either eating or sleeping.

1



Solution:

p : My cat is eating
q : My cat is sleeping
r : I’m trying to type

¬r → (p⊕ q)

2. Teatime
Consider the following sentence:

If I am drinking tea then I am eating a cookie, or, if I am eating a cookie then I am drinking tea.

(a) Define propositional variables and translate the sentence into an expression in logical notation.

Solution:

p : I am drinking tea
q : I am eating a cookie

(p → q) ∨ (q → p)

(b) Fill out a truth table for your expression.

Solution:
p q (p → q) (q → p) (p → q) ∨ (q → p)

T T T T T
T F F T T
F T T F T
F F T T T

(c) Based on your truth table, classify the original sentence as a contingency, tautology, or contradiction.

Solution:
Tautology

2



3. Truth Tables
Write a truth table for each of the following:

(a) (p⊕ q) ∨ (p⊕ ¬q)

Solution:
p q p⊕ q p⊕ ¬q (p⊕ q) ∨ (p⊕ ¬q)

T T F T T
T F T F T
F T T F T
F F F T T

(b) (p ∨ q) → (p⊕ q)

Solution:
p q p ∨ q p⊕ q (p ∨ q) → (p⊕ q)

T T T F F
T F T T T
F T T T T
F F F F T

(c) p ↔ ¬p

Solution:
p ¬p p ↔ ¬p

T F F
F T F

4. Circuitous
Translate the following circuit into a logical expression.

q

p NOT

NOT AND

OR NOT OUT

Solution:
¬(¬p ∨ (p ∧ ¬q))

3



5. The Curious Case of The Lying TAs
A new UW student wandered around the Paul Allen Center on their first day at UW. They found (as many do)
that there is a secret room in its basements. On the door of this secret room is a sign that says:

All ye who enter, beware! Every inhabitant of this room is either a TA who
always lies or a student who always tells the truth!

The UW student somehow magically divines that this sign is telling the truth and enters the room. Now,
consider the following scenarios:

(a) After entering the room, two inhabitants suddenly walk up to the UW student. One of them one of them
says: “At least one of us is a TA”.

Model this scenario in the following method. Hint: your method should consist of a series of calls to the
assume(...) method.

Solution:
public static void modelPartA(BoolExpr xIsTa, BoolExpr xIsStudent,

BoolExpr yIsTa, BoolExpr yIsStudent) {
// Step 1: assert each inhabitant is a TA xor a student
assume(xor(xIsTa, xIsStudent));
assume(xor(yIsTa, yIsStudent));

// Step 2: encode the claim "At least one of us is a TA"
BoolExpr claim = or(xIsTa, yIsTa);

// Step 3: if x is a student, then the claim is true
assume(implies(xIsStudent, claim));

// Step 4: if x is a TA, then the claim is false
assume(implies(xIsTA, not(claim)));

}

(b) Now, consider the same scenario as part (a), only this time three inhabitants walk up to the student.
Model this new scenario:

Solution:
public static void modelPartB(BoolExpr xIsTa, BoolExpr xIsStudent,

BoolExpr yIsTa, BoolExpr yIsStudent,
BoolExpr zIsTa, BoolExpr zIsStudent) {

assume(xor(xIsTa, xIsStudent));
assume(xor(yIsTa, yIsStudent));
assume(xor(zIsTa, zIsStudent));

BoolExpr claim = or(or(xIsTa, yIsTa), zIsTA);

assume(implies(xIsStudent, claim));
assume(implies(xIsTA, not(claim)));

}

4



(c) What if n inhabitants walk up to the student? Model this situation.

Solution:
public static void modelPartC(int n, BoolExpr[] isTa, BoolExpr[] isStudent) {

for (int i = 0; i < n; i++) {
assume(xor(isTa[i], isStudent[i]);

}

BoolExpr claim = isTa[0];
for (int i = 1; i < n; i++) {

claim = or(claim, isTa[i]);
}

assume(implies(isStudent[0], claim));
assume(implies(isTa[0], not(claim)));

}

(d) Let’s consider a new scenario. Suppose three inhabitants walk up and surround the UW student. One of
them says: “Every TA in this circle has a TA to her immediate right”. Model this situation:

Solution:
public static void modelPartD(BoolExpr xIsTa, BoolExpr xIsStudent,

BoolExpr yIsTa, BoolExpr yIsStudent,
BoolExpr zIsTa, BoolExpr zIsStudent) {

assume(xor(xIsTa, xIsStudent));
assume(xor(yIsTa, yIsStudent));
assume(xor(zIsTa, zIsStudent));

BoolExpr claim = and(
implies(xIsTa, yIsTa),
and(

implies(yIsTa, zIsTa),
implies(zIsTA, xIsTa)));

assume(implies(xIsStudent, claim));
assume(implies(xIsTA, not(claim)));

}

5


