CSE 311: Foundations of Computing I

Section : NFAs, Minimization, Irregular Languages Solutions

0 . NFAs

(a) What language does the following NFA accept?

Solution:

All strings of only 0 's and 1 's not containing more than one 1 .
(b) Create an NFA for the language "all binary strings that have a 1 as one of the last three digits".

Solution:

The following is one such NFA:

1. DFAs \& Minimization

(a) Convert the NFA from 0a to a DFA, then minimize it.

Solution:

(b) Minimize the following DFA:

Solution:

2. Irregularity

(a) Let $\Sigma=\{0,1\}$. Prove that $\left\{0^{n} 1^{n} 0^{n}: n \geq 0\right\}$ is not regular.

Solution:

Let $L=\left\{0^{n} 1^{n} 0^{n}: n \geq 0\right\}$. Let D be an arbitrary DFA, and suppose for contradiction that D accepts L. Consider $S=\left\{0^{n} 1^{n}: n \geq 0\right\}$. Since S contains infinitely many strings and D has a finite number of states, two strings in S must end up in the same state. Say these strings are $0^{i} 1^{i}$ and $0^{j} 1^{j}$ for some $i, j \geq 0$ such that $i \neq j$. Append the string 0^{i} to both of these strings. The two resulting strings are:
$a=0^{i} 1^{i} 0^{i}$ Note that $a \in L$.
$b=0^{j} 1^{j} 0^{i}$ Note that $b \notin L$, since $i \neq j$.
Since a and b end up in the same state, but $a \in L$ and $b \notin L$, that state must be both an accept and reject state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not regular.
(b) Let $\Sigma=\{0,1,2\}$. Prove that $\left\{0^{n}(12)^{m}: n \geq m \geq 0\right\}$ is not regular.

Solution:

Let $L=\left\{0^{n}(12)^{m}: n \geq m \geq 0\right\}$. Let D be an arbitrary DFA, and suppose for contradiction that D accepts L. Consider $S=\left\{0^{n}: n \geq 0\right\}$. Since S contains infinitely many strings and D has a finite number of states, two strings in S must end up in the same state. Say these strings are 0^{i} and 0^{j} for some $i, j \geq 0$ such that $i>j$. Append the string (12) ${ }^{i}$ to both of these strings. The two resulting strings are:
$a=0^{i}(12)^{i}$ Note that $a \in L$.
$b=0^{j}(12)^{i}$ Note that $b \notin L$, since $i>j$.
Since a and b end up in the same state, but $a \in L$ and $b \notin L$, that state must be both an accept and reject state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not regular.
(c) Let $\Sigma=\{()$,$\} . Prove that the language \left\{s \in \Sigma^{*}: s\right.$ is composed of correctly nested \& balanced parentheses $\}$ is not regular.

Solution:

Let $L=\left\{s \in \Sigma^{*}: s\right.$ is composed of correctly nested \& balanced parentheses $\}$. Let D be an arbitrary DFA, and suppose for contradiction that D accepts L. Consider $S=\left\{{ }^{n}: n \geq 0\right\}$. Since S contains infinitely many strings and D has a finite number of states, two strings in S must end up in the same state. Say these strings are (${ }^{i}$ and (${ }^{j}$ for some $i, j \geq 0$ such that $i \neq j$. Append the string $)^{i}$ to both of these strings. The two resulting strings are:
$a=\left({ }^{i}\right)^{i}$ Note that $a \in L$.
$b=\left({ }^{j}\right)^{i}$ Note that $b \notin L$, since $i \neq j$, so the left and right parentheses are imbalanced.
Since a and b end up in the same state, but $a \in L$ and $b \notin L$, that state must be both an accept and reject state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is not regular.

