CSE 311: Foundations of Computing I

Section : Structural Induction and Regular Expressions Solutions

0 . Structural Induction

(a) Recall the recursive definition of a list:

$$
\text { List }=[] \text { | Int :: List }
$$

And the definition of len on lists:

$$
\begin{array}{ll}
\operatorname{len}([]) & =0 \\
\operatorname{len}(x:: L) & =1+\operatorname{len}(L)
\end{array}
$$

Consider the following recursive definition:

$$
\begin{array}{ll}
\operatorname{stutter}([]) & =[] \\
\operatorname{stutter}(x:: L) & =x:: x:: \operatorname{stutter}(L)
\end{array}
$$

Prove that len $(\operatorname{stutter}(L))=2 \operatorname{len}(L)$ for all Lists L.

Solution:

We go by structural induction. Let L be a list.
Case $L=[]$. Note that $\operatorname{len}(\operatorname{stutter}([]))=\operatorname{len}([])=0=2 \operatorname{len}([])$.
Case $L=x:: L^{\prime}$. Suppose that $\operatorname{len}\left(\operatorname{stutter}\left(L^{\prime}\right)\right)=2 \operatorname{len}\left(L^{\prime}\right)$ for some list L^{\prime}.
Note that

$$
\begin{aligned}
\operatorname{len}\left(\operatorname{stutter}\left(x:: L^{\prime}\right)\right) & =\operatorname{len}\left(x:: x:: \operatorname{stutter}\left(L^{\prime}\right)\right) & & \text { [By Definition of stutter] } \\
& =1+\operatorname{len}\left(x:: \operatorname{stutter}\left(L^{\prime}\right)\right) & & \text { [By Definition of len] } \\
& =1+1+\operatorname{len}\left(\operatorname{stutter}\left(L^{\prime}\right)\right) & & {[\text { By Definition of len }] } \\
& =2+2 \operatorname{len}\left(L^{\prime}\right) & & {[\text { By IH] }} \\
& =2\left(1+\operatorname{len}\left(L^{\prime}\right)\right) & & {[\text { Algebra] }} \\
& =2\left(\operatorname{len}\left(x:: L^{\prime}\right)\right) & & {[\text { By Definition of len }] }
\end{aligned}
$$

Thus, the claim is true for all Lists by structural induction.
(b) Consider the recursive definition of a tree:

$$
\text { Tree }=\text { Nil } \mid \text { Tree }(\text { Integer }, \text { Tree, } \text { Tree })
$$

And the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\operatorname{Nil}) & =0 \\
\operatorname{size}(\operatorname{Tree}(x, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

And the definition of height on trees:

$$
\begin{array}{ll}
\operatorname{height}(\operatorname{Nil}) & =0 \\
\operatorname{height}(\operatorname{Tree}(x, L, R)) & =1+\max (\operatorname{height}(L), \operatorname{height}(R))
\end{array}
$$

Prove that size $(T) \leq 2^{\text {height }(T)+1}-1$ for all Trees T.

Solution:

We go by structural induction. Let T be a tree.
Case $T=$ Nil. Note that size(Nil) $=0 \leq 1=2^{0+1}-1=2^{\text {height(Nil) }+1}-1$.
Case $T=\operatorname{Tree}(x, L, R)$. Suppose that size $(L) \leq 2^{\text {height }(L)+1}-1$ and $\operatorname{size}(R) \leq 2^{\text {height }(R)+1}-1$ for some trees L and R.
Note that

$$
\begin{align*}
\operatorname{size}(\operatorname{Tree}(x, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R) & & \text { [By Definition of size] } \\
& \leq 1+2^{\operatorname{height}(L)+1}-1+2^{\operatorname{height}(R)+1}-1 & & {[\text { By IH] }} \tag{ByIH}\\
& \leq 1+2^{\max (\operatorname{height}(L), \operatorname{height}(R))+1}-1+2^{\max (\operatorname{height}(L), \text { height }(R))+1}-1 & & {[\text { By max }] } \\
& \leq 2\left(2^{\operatorname{height}(\operatorname{Tree}(x, L, R))}\right)-1 & & \text { [Algebra] } \\
& \leq 2^{\operatorname{height}(\operatorname{Tree}(x, L, R))+1}-1 & & \text { [Algebra] }
\end{align*}
$$

Thus, the claim is true for all Trees by structural induction.

1. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

$$
0 \cup\left((1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^{*}\right)
$$

(b) Write a regular expression that matches all base- 3 numbers that are divisible by 3 .

Solution:

$$
0 \cup\left((1 \cup 2)(0 \cup 1 \cup 2)^{*} 0\right)
$$

(c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring "000".

Solution:

$$
\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon) 111\left(01 \cup 001 \cup 1^{*}\right)^{*}(0 \cup 00 \cup \varepsilon)
$$

