
CSE 311: Foundations of Computing I

Section : Structural Induction and Regular Expressions Solutions

0. Structural Induction
(a) Recall the recursive definition of a list:

List = [] | Int :: List

And the definition of len on lists:
len([]) = 0

len(x :: L) = 1 + len(L)

Consider the following recursive definition:

stutter([]) = []

stutter(x :: L) = x :: x :: stutter(L)

Prove that len(stutter(L)) = 2len(L) for all Lists L.

Solution:
We go by structural induction. Let L be a list.

Case L = []. Note that len(stutter([])) = len([]) = 0 = 2len([]).

Case L = x :: L′. Suppose that len(stutter(L′)) = 2len(L′) for some list L′.

Note that

len(stutter(x :: L′)) = len(x :: x :: stutter(L′)) [By Definition of stutter]
= 1 + len(x :: stutter(L′)) [By Definition of len]
= 1 + 1 + len(stutter(L′)) [By Definition of len]
= 2 + 2len(L′) [By IH]
= 2(1 + len(L′)) [Algebra]
= 2(len(x :: L′)) [By Definition of len]

Thus, the claim is true for all Lists by structural induction.

(b) Consider the recursive definition of a tree:

Tree = Nil | Tree(Integer,Tree,Tree)

And the definition of size on trees:

size(Nil) = 0

size(Tree(x, L,R)) = 1 + size(L) + size(R)

And the definition of height on trees:

height(Nil) = 0

height(Tree(x, L,R)) = 1 +max(height(L), height(R))

Prove that size(T ) ≤ 2height(T )+1 − 1 for all Trees T .

1



Solution:
We go by structural induction. Let T be a tree.

Case T = Nil. Note that size(Nil) = 0 ≤ 1 = 20+1 − 1 = 2height(Nil)+1 − 1.

Case T = Tree(x, L,R). Suppose that size(L) ≤ 2height(L)+1−1 and size(R) ≤ 2height(R)+1−1 for some
trees L and R.

Note that

size(Tree(x, L,R)) = 1 + size(L) + size(R) [By Definition of size]

≤ 1 + 2height(L)+1 − 1 + 2height(R)+1 − 1 [By IH]

≤ 1 + 2max(height(L),height(R))+1 − 1 + 2max(height(L),height(R))+1 − 1 [By max]

≤ 2
(
2height(Tree(x,L,R))

)
− 1 [Algebra]

≤ 2height(Tree(x,L,R))+1 − 1 [Algebra]

Thus, the claim is true for all Trees by structural induction.

1. Regular Expressions
(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Solution:

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the
substring “000”.

Solution:

(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)

2


