CSE 311: Foundations of Computing |

Section : Structural Induction and Regular Expressions Solutions

0. Structural Induction

(a)

Recall the recursive definition of a list:
List = [] | Int :: List

And the definition of len on lists:

len([]1) =0
len(z :: L) =1+4len(L)

Consider the following recursive definition:

stutter([]) =1
stutter(z :: L) = x :: x :: stutter(L)

Prove that len(stutter(L)) = 2len(L) for all Lists L.

Solution:

We go by structural induction. Let L be a list.

Case L = [1. Note that len(stutter([1)) = len([1) = 0 = 2len([1).

Case L =z :: L. Suppose that len(stutter(L’)) = 2len(L’) for some list L’.
Note that
len(stutter(z :: L)) = len(x :: = :: stutter(L’)) [By Definition of stutter]
=1+ len(z :: stutter(L')) [By Definition of len]
=1+ 1+ len(stutter(L')) [By Definition of len]

=2+ 2len(L’) [By IH]
=2(1 +len(L")) [Algebra]
=2(len(x :: L") [By Definition of len]

Thus, the claim is true for all Lists by structural induction.

Consider the recursive definition of a tree:

Tree = Nil | Tree(Integer, Tree, Tree)

And the definition of size on trees:
size(Nil) =0
size(Tree(x, L, R)) =1+ size(L) + size(R)
And the definition of height on trees:
height(Nil) =0
height(Tree(x, L, R)) =1+ max(height(L), height(R))

Prove that size(T") < 2"¢ie"t(T)+1 _ 1 for all Trees 7.

Solution:
We go by structural induction. Let T be a tree.
Case T = Nil. Note that size(Nil) = 0 < 1 = 20+1 — 1 = gheight(il)+1 _

Case T = Tree(z, L, R). Suppose that size(L) < 2"¢ight(L)+1 _1 and size(R) < 2height(F)+1 _1 for some
trees L and R.

Note that
size(Tree(z, L, R)) = 1 + size(L) + size(R) [By Definition of size]
< 1 4 oheight(L)+1 _ 1 | oheight(R)+1 _ q [By IH]
< 1 gmax(height(L) height(R))+1 _ 1 | gmax(height(L)height(R)+1 _ 1 By max]
<9 (Qheight(Tree(:c,L,R))) 1 [Algebra]
< gheight(Tree(z,LR)+1 _ [Algebra]

Thus, the claim is true for all Trees by structural induction.

1. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

0U((1U2U3U4UBUBUTUSUI9)(0UTU2U3U4U5U6UTUSU9)Y)
(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Solution:

0U ((1U2)(0U1U?2)*0)

(c) Write a regular expression that matches all binary strings that contain the substring “111", but not the
substring “000".

Solution:

(01 U001 U 1*)*(0U00U&)111(01 U001 U 1*)*(0U 00 U &)

