
CSE 311: Foundations of Computing I

Section 5: Number Theory & Induction Solutions

0. GCD
(a) Calculate gcd(100, 50).

Solution:
50

(b) Calculate gcd(17, 31).

Solution:
1

(c) Find the multiplicative inverse of 6 modulo 7.

Solution:
6

(d) Does 49 have an multiplicative inverse modulo 7?

Solution:
It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7, which means it can never be
1.

(e) Find the multiplicative inverse of 7 modulo 311.

Solution:
89

(f) Find the multiplicative inverse of 27 modulo 151.

Solution:
28

1. More Number Theory
(a) Prove that if n2 + 1 is a perfect square, where n is an integer, then n is even.

Solution:
Suppose n2 + 1 is a perfect square. Then, by definition of perfect square, n2 + 1 = k2 for some k ∈ N.
Suppose for contradiction that n is odd. Then, n2+1 = (2j+1)2+1 = 4j2+4j+1+1 = 4(j2+ j)+2.

(b) Prove that if n is a positive integer such that the sum of the divisors of n is n+ 1, then n is prime.
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Solution:
Note that n | n. If the sum of divisors of n is n+ 1, then n+ 1− n = 1 must be the only other divisor.
It follows, by definition of prime, that n is prime.

2. Induction
(a) Prove that if you have two groups of numbers, a1, · · · , an and b1, · · · , bn, such that ∀(i ∈ [n]). ai ≤ bi,

then it must be that:
n∑

i=1

ai ≤
n∑

i=1

bi

Solution:
We prove this by induction on n:

Base Case (n = 0). We know that:
n∑

i=1

ai =

0∑
i=1

ai = 0

n∑
i=1

bi =

0∑
i=1

bi = 0

n∑
i=1

ai = 0 ≤ 0 =
n∑

i=1

bi

So the claim is true for n = 0.

Induction Hypothesis. Suppose for some k ∈ N that
k∑

i=1

ai ≤
k∑

i=1

bi for all groups of numbers a1, · · · , ak

and b1, · · · , bk such that ai ≤ bi for all i ∈ [k]

Induction Step. Let the groups of numbers a1, · · · , ak+1 and b1, · · · , bk+1 be two groups such that
ai ≤ bi for all i ∈ [k + 1].
Note that

k+1∑
i=0

ai =

k∑
i=0

ai + ak+1 [Splitting the summation]

≤
k∑

i=0

bi + ak+1 [By IH]

≤
k∑

i=0

bi + bk+1 [By Assumption]

≤
k+1∑
i=1

bi [Algebra]

Thus we have shown that if the claim is true for k, it is true for k + 1.

Therefore, we have shown the claim for all n ∈ N by induction.

(b) For any n ∈ N, define Sn to be the sum of the squares of the first n positive integers, or

Sn =

n∑
i=1

i2.

For all n ∈ N, prove that Sn = 1
6n(n+ 1)(2n+ 1).
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Solution:
Let P(n) be the statement “Sn = 1

6n(n+ 1)(2n+ 1)” defined for all n ∈ N. We prove that P(n) is true
for all n ∈ N by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of
no terms, so we have a sum of 0. Thus, S0 = 0. Since 1

6(0)(0 + 1)((2)(0) + 1) = 0, we know that
P(0) is true.

Induction Hypothesis. Suppose that P(k) is true for some k ∈ N.

Induction Step. Examining Sk+1, we see that

Sk+1 =

k+1∑
i=1

i2 =

k∑
i=1

i2 + (k + 1)2 = Sk + (k + 1)2.

By the induction hypothesis, we know that Sk = 1
6k(k + 1)(2k + 1). Therefore, we can substitute

and rewrite the expression as follows:

Sk+1 = Sk + (k + 1)2

=
1

6
k(k + 1)(2k + 1) + (k + 1)2

= (k + 1)

(
1

6
k(2k + 1) + (k + 1)

)
=

1

6
(k + 1) (k(2k + 1) + 6(k + 1))

=
1

6
(k + 1)

(
2k2 + 7k + 6

)
=

1

6
(k + 1)(k + 2)(2k + 3)

=
1

6
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

Thus, we can conclude that P(k + 1) is true.

Therefore, because the base case and induction step hold, P(n) is true for all n ∈ N by induction.

(c) Define the triangle numbers as 4n = 1+2+· · ·+n, where n ∈ N. We showed in lecture that 4n = n(n+1)
2 .

Prove the following equality for all n ∈ N:

n∑
i=0

i3 = 42
n

Solution:

First, note that 4n =
n∑

i=0

i. So, we are trying to prove
n∑

i=0

i3 =

(
n∑

i=0

i

)2

.

Let P(n) be the statement:
n∑

i=0

i3 =

(
n∑

i=0

i

)2

We prove that P(n) is true for all n ∈ N by induction on n.
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Base Case. 03 = 02, so P(0) holds.

Induction Hypothesis. Suppose that P(k) is true for some k ∈ N.

Induction Step. We show P(k + 1):

k+1∑
i=0

i3 =

k∑
i=1

i3 + (k + 1)3 [Take out a term]

=

(
k∑

i=0

i

)2

+ (k + 1)3 [Induction Hypothesis]

=

(
k(k + 1)

2

)2

+ (k + 1)3 [Substitution from part (a)]

= (k + 1)2
(
k2

22
+ (k + 1)

)
[Factor (k + 1)2]

= (k + 1)2
(
k2 + 4k + 4

4

)
[Add via comon denominator]

= (k + 1)2
(
(k + 2)2

4

)
[Factor numerator]

=

(
(k + 1)(k + 2)

2

)2

[Take out the square]

=

(
k+1∑
i=0

i

)2

[Substitution from part (a)]

Therefore, P(n) is true for all n ∈ N by induction.
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