CSE 311: Foundations of Computing |

Section 5: Number Theory & Induction Solutions

0. GCD
(a) Calculate ged(100, 50).
Solution:
50

(b) Calculate ged(17,31).

Solution:
1

(c) Find the multiplicative inverse of 6 modulo 7.

Solution:
6

(d) Does 49 have an multiplicative inverse modulo 77

Solution:

It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7, which means it can never be
1.

(e) Find the multiplicative inverse of 7 modulo 311.

Solution:
89

(f) Find the multiplicative inverse of 27 modulo 151.

Solution:
28

1. More Number Theory

(a) Prove that if n? + 1 is a perfect square, where n is an integer, then n is even.

Solution:

Suppose n? + 1 is a perfect square. Then, by definition of perfect square, n? + 1 = k? for some k € N.
Suppose for contradiction that n is odd. Then, n2+1 = (2j+1)?2+1 =452 +4j+1+1=4(j2+j) +2.

(b) Prove that if n is a positive integer such that the sum of the divisors of n is n + 1, then n is prime.



Solution:

Note that n | n. If the sum of divisors of n is n + 1, then n + 1 — n = 1 must be the only other divisor.
It follows, by definition of prime, that n is prime.

2. Induction
(a) Prove that if you have two groups of numbers, ai,--- ,a, and by, - , by, such that V(i € [n]). a; < b;,

then it must be that:
n n
> ai <) b
i=1 i=1

Solution:

We prove this by induction on n:

Base Case (n = 0). We know that:
n 0

n 0
=1 =1

i=1 =1

Zn:aZ-:OgO:zn:bi
=1 i=1

So the claim is true for n = 0.

k k
Induction Hypothesis. Suppose for some k& € N that Z a; < Z b; for all groups of numbers a1, - - , az
i=1 i=1
and by, -, by such that a; < b; for all i € [k]
Induction Step. Let the groups of numbers ay, -+ ,ars 1 and by, - ,bxi1 be two groups such that
a; <b; forallielk+1].
Note that
k+1 k
Z a; = Z a; + agi1 [Splitting the summation]
=0 =0
k
< b+ ar [By IH]
i=0
k
< Z bi + br11 [By Assumption]
i=0
k+1
< Z b; [Algebra]
i=1

Thus we have shown that if the claim is true for k, it is true for k + 1.
Therefore, we have shown the claim for all n € N by induction.

(b) For any n € N, define S,, to be the sum of the squares of the first n positive integers, or

n
S, = § i2.
=1

For all n € N, prove that S, = 2n(n + 1)(2n + 1).



Solution:
Let P(n) be the statement “S,, = ¢n(n + 1)(2n + 1)" defined for all n € N. We prove that P(n) is true
for all n € N by induction on n.

Base Case. When n = 0, we know the sum of the squares of the first n positive integers is the sum of
no terms, so we have a sum of 0. Thus, Sy = 0. Since £(0)(0 + 1)((2)(0) + 1) = 0, we know that
P(0) is true.

Induction Hypothesis. Suppose that P(k) is true for some k € N.

Induction Step. Examining Sk, we see that

k+1 k
Sprr = i?=> i+ (k+1)% =S+ (k+1)°
=1 =1

By the induction hypothesis, we know that Sy = #k(k + 1)(2k + 1). Therefore, we can substitute
and rewrite the expression as follows:

Skr1 = Sk + (k + 1)2

- ék(k 1)k 4 1)+ (k+1)2
— (k+1) (ék(% T 1)+t 1)>

- é(/ﬂ +1) (k(2k + 1) +6(k + 1))
1
"6

= S(k+ 1)+ 2)(2K +3)

(k+1) (2k* + 7k +6)

1
= E(k +D((k+1)+1)(2(k+1)+1)
Thus, we can conclude that P(k + 1) is true.
Therefore, because the base case and induction step hold, P(n) is true for all n € N by induction.

(c) Define the triangle numbers as A, = 142+ - -+n, where n € N. We showed in lecture that A, = "(”;1).

Prove the following equality for all n € N:

=N

n
1=0

Solution:

n n n 2
First, note that A, = Zz So, we are trying to prove i3 = ( z> .
i=0 i=0 i=0
Let P(n) be the statement:

n n 2
>0 (3]
i=0 i=0
We prove that P(n) is true for all n € N by induction on n.



Base Case. 0% = 02, so P(0) holds.
Induction Hypothesis. Suppose that P(k) is true for some k € N.
Induction Step. We show P(k + 1):

k+1
Zz —Zz +(k+1)3 [Take out a term]
e\ 2
= (Z z) + (k+1)3 [Induction Hypothesis]
i=0
= (k(k i 1)> +(k+1)3 [Substitution from part (a)]
=(k+1) 2( +(k+1) ) [Factor (k + 1)?]
2
)2 (k Akt 4) [Add via comon denominator]
(k+1)2 ( (k+2) ) [Factor numerator|
( (k+1) (k ) [Take out the square]
K+l 2
= (Z z) [Substitution from part (a)]
i=0

Therefore, P(n) is true for all n € N by induction.



