CSE 311.: Foundations of Computing

Lecture 25: Limits of Computation

DEFINE DoES ITHALT (PROGRAM):
{

5

RETORN TRUE;

THE BIG PICTURE S0WTION
To THE HALTING PROBLEM

Languages and Machines!

All o~
Are there
Java things Java

can’t do?

Context-Free

Binary Palindromes

{001, 10, 12}

What We’re About To Do....

Today, we will dispel the
notion that Java is a
magical language that
allows us to solve any
problem we want if we're
smart enough.

An Assignment Too Simple for 142!

Students should write a Java program that...
— Prints “Hello” to the console
— Eventually exits

Gradelt, Practicelt, etc. need to grade the
students.

How do we write that grading program?

Follow Up Question

What does this program do?

(., ’) { /_<=1?_(__, +1,

)N %) (L, +1,0): % ==

/&) ?(printf("%d\t", /), (_,_

_+1,0)): % >1&& % </ 2 (1+
’ +I(___/_%(__%_)))i__<_*

P (., +1, _):0;}main(){_(100,0,0);}

Follow Up Question

public static int collatz(n) {
if (n == 1) {
return 1;

}
if (n % 2 ==0) {
return collatz(n/2)

}
else {

return collatz(3n + 1)
}

}
What is in the set { x : collatz(n) = 1}?

Some Notation and Starting Ideas

We're going to be talking about Java code a
lot.

CODE(P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {
return new String(Arrays.sort(x.toCharArray());

¥

What is P(CODE(P))?
“U(0))..;AACPSSaaabceeggghiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”

The Halting Problem

Given:
— CODE(P) for a program P

Output:
— true if P halts
— false if P does not halt

The “standard” version of the
halting problem takes some number
as input. We consider this one,
because it’s easier to think about.

Remember, this means X is a program and
Proof Strategy HALT(X) is true when X halts and false otherwise.

Imagine we had a HALT(X) function which
solved the halting problem...

Our goal is to write a program that CONFUSES
the function HALT so that it does the wrong thing.

public static void PROGRAM() {

Remember, this means X is a program and
Proof Strategy HALT(X) is true when X halts and false otherwise.

Imagine we had a HALT(X) function which
solved the halting problem...

Our goal is to write a program that CONFUSES
the function HALT so that it does the wrong thing.

public static void PROGRAM() {
if (/* I should halt */) {
/* don’t halt */
}
else {
/* halt */
}
}

Remember, this means X is a program and
Proof Strategy HALT(X) is true when X halts and false otherwise.

Imagine we had a HALT(X) function which
solved the halting problem...

Our goal is to write a program that CONFUSES
the function HALT so that it does the wrong thing.

public static void PROGRAM() {
if (/* I should halt */) {
while (true);
}
else {
return;

¥
}

Remember, this means X is a program and
Proof Strategy HALT(X) is true when X halts and false otherwise.

Imagine we had a HALT(X) function which
solved the halting problem...

Our goal is to write a program that CONFUSES
the function HALT so that it does the wrong thing.

public static void PROGRAM() {
if (HALT(MY_SOURCE_CODE)) {
while (true);
}
else {
return;

¥
}

Remember, this means X is a program and
Proof Strategy HALT(X) is true when X halts and false otherwise.

Suppose for contradiction we had a HALT(X)
function which solved the halting problem...
public static void P(String input) {
if (HALT(input)) {
while (true);

}

else {
return;

¥
}

Quick Question. What does this do?
OnMySourceCodeGENERATOR(P)

Remember, this means X is a program and
Proof Strategy HALT(X) is true when X halts and false otherwise.

Suppose for contradiction we had a HALT(X)
function which solved the halting problem...
public static void P(String input) {
if (HALT(input)) {
while (true);

}

else {
return;

¥
}

Does POnMySourceCode halt?

public static void HALT(String input) {
// We don’t know how this works,
// but we assume that it does.

// So, if input is a program that
// halts, then this returns true.
// Otherwise, it returns false.

void P(String input) {
if (HALT(input)) {
while (true);
}
else {
return;

}
}

‘Does POnMySourceCode halt? ‘

Recall that POnMySourceCode does the same thing as

P(CODE (POnMySourceCode)).

while (true);
}
else {
return;

}
}

void POnMySourceCode() {
if (HALT(CODE(POnMySourceCode))) {

public static void HALT(String input) {
// We don’t know how this works,
// but we assume that it does.

// So, if input is a program that
// halts, then this returns t
// Otherwise, it returns false.

}

Suppose POnMySourceCode halts. ‘

HALT(CODE (POnMySourceCode)) is true.

void POnMySourceCode() {

while (true);

return;

}
}

So, this if

if (HALT (copE (PonMySourceColimmimimmimpm— statement

} is true!
T So, the

code loops
forever!

This is a contradiction, so POnMySourceCode does not halt.

public static void HALT(String input) {
// We don’t know how this works,
// but we assume that it does.

// So, if input is a program that
// halts, then this returns true.
// Otherwise, it returns false.

Suppose POnMySourceCode does not halt. ‘

HALT(CODE (POnMySourceCode)) is false.

void POnMySourceCode() { So, this if

if (HALT (copE (PonMySourceColimmimimmimpm— statement
while (true);]
} is false!
else { So, the
r‘etur‘n; M ’

} code

} halts!

This is a contradiction, so POnMySourceCode can’t not halt.

Suppose for contradiction we had a HALT(X) function which solved
the halting problem...

‘Suppose POnMySourceCode halts. ‘

Then, HALT(CODE (POnMySourceCode)) is true.
So, the if statement in POnMySourceCode is true!
So, the code loops forever!

‘This is a contradiction, so POnMySourceCode does not halt.

‘Suppose POnMySourceCode does not halt. ‘

Then, HALT(CODE (POnMySourceCode)) is false.
So, the if statement in POnMySourceCode is true!

So, the code loops forever!
‘This is a contradiction, so POnMySourceCode can’t not halt.

‘So, POnMySourceCode. So, P does not exist. So, HALT does not exist. ‘

That’s it!

 We proved that there is no Java program
that can solve the Halting Problem.

* This tells us that there is no compiler that
can check our programs and guarantee to
find any infinite loops they might have.

That's-it!

BUT WAIT...

THERE’S MORE!

public static void D(String input) {
// Returns true if, when run, input
// does X.
// Otherwise, it returns false.

}

void P(String input) {
if (D(input)) {
D_IS_FALSE();
}
else {
D_IS TRUE();

}
}

‘Is D(POnMySourceCode)true? ‘

Recall that POnMySourceCode does the same thing as

P(CODE (POnMySourceCode)).

D IS FALSE();
}
else {

D IS TRUE();

}
}

void POnMySourceCode() {
if (D(CODE(POnMySourceCode))) {

Rice’s Theorem

 We’ve now proven that for any property
about the “behavior” of programs, D, if...

— There is some program D_IS FALSE() for
which D is false.

— There is some program D_IS TRUE() for which
D is true.

* Then, D does not exist.

Rice’s Theorem

 Does P have a NullPointerException?
* Do P and Q do the same thing?

* Does P output O on any input?

* Does P have a buffer overflow?

* Does P have a virus?

* Does P have “dead code”?

That's-it!

BUT WAIT...

THERE’S MORE!

Church-Turing Thesis

“All physically computable
functions are Java-decidable”

That is, there is no
programming language more
powerful than Java.

