
CSE 311: Foundations of Computing

Lecture 17: Structural Induction



Strings

• An alphabet Σ is any finite set of characters

• The set Σ* is the set of strings over the alphabet 
Σ.

Σ* =  !"""Σ∗"%

• The set of strings is made up of:
– � ∈ Σ*  (� is the empty string)
– If & ∈ Σ*, % ∈ Σ, then W% ∈ Σ*

A STRING is EMPTY or “STRING CHAR”.



Palindromes

Pal = !"""%"""%"Pal"%
A PAL is EMPTY or CHAR or “CHAR PAL CHAR”.

Palindromes are strings that are the same backwards and 
forwards (e.g. “abba”, “tht”, “neveroddoreven”).



Recursively Defined Programs (on Binary Strings)

B = !""""0""""1"""""B + B
A BSTR is EMPTY, 0, 1, or “BSTR BSTR”.

Let’s write a “reverse” function for binary strings.

rev : B → B
rev is a function that takes in a binary 
string and returns a binary string



Recursively Defined Programs (on Binary Strings)

B = !""""0""""1"""""B + B
A BSTR is EMPTY, 0, 1, or “BSTR BSTR”.

Let’s write a “reverse” function for binary strings.

rev : B → B
rev(!)        = !
rev(0)       = 0
rev(1)       = 1
rev(a + b) = rev(b) + rev(a)



Recursively Defined Programs (on Binary Strings)

rev : B → B
rev(!)        = !
rev(0)       = 0
rev(1)       = 1
rev(a + b) = rev(b) + rev(a)

B = !""""0""""1"""""B + B

Claim: For%all%binary%strings%X,%%rev(rev(X)) = X
Case !:  rev(rev(�)) = rev(�) = �
Case 0:  rev(rev(0)) = rev(0) = 0
Case 1:  rev(rev(1)) = rev(1) = 1

Def of rev
Def of rev
Def of rev



Recursively Defined Programs (on Binary Strings)

rev : B → B
rev(!)        = !
rev(0)       = 0
rev(1)       = 1
rev(a + b) = rev(b) + rev(a)

B = !""""0""""1"""""B + B

Claim: For%all%binary%strings%X,%%rev(rev(X)) = X
Case / + 0:  

rev(rev(a%+%b)) = rev(rev(b) + rev(a))
= rev(rev(a)) + rev(rev(b))
= a + b

Def of rev
Def of rev
By IH!



Recursively Defined Programs (on Binary Strings)
rev : B → B
rev(!)        = !
rev(0)        = 0
rev(1)        = 1
rev(a + b)  = rev(b) + rev(a)

B = !""""0""""1"""""B + B

Claim: For%all%binary%strings%X,%%rev(rev(X)) = X
We go by structural induction on B.
Case !:  rev(rev(�)) = rev(�) = �
Case 0:  rev(rev(0)) = rev(0) = 0
Case 1:  rev(rev(1)) = rev(1) = 1
Case / + 0:  

rev(rev(a%+%b)) = rev(rev(b) + rev(a))
= rev(rev(a)) + rev(rev(b))
= a + b

Def of rev
Def of rev
By IH!

Def of rev
Def of rev
Def of rev

Since the claim is true for all the cases, it’s true for all binary strings.



All Binary Strings with no 1’s before 0’s
A = !""""0 + A""""A+ 1

len : A → Int
len(!) = 0
len(0 + a)  = 1 + len(a)
len(a + 1)  = 1 + len(a)

#0: A → Int
#0(!)         = 0
#0(0 + a)  = 1 + #0(a)
#0(a + 1)  = #0(a)

no1: A → A
no1 (!)       = !
no1(0 + a)  = 0 + no1(a)
no1(a + 1)  = no1(a)

Claim: Prove that for all 2 ∈ 4, len(no1(x)) = #0(x)

We go by structural induction on A.  Let 2 ∈ 4 be arbitrary.
Case A = !: 

len(no1(!)) = len(!) [Def of no1]
= 0 [Def of len]
= #0(!) [Def of #0]



All Binary Strings with no 1’s before 0’s
A = !""""0 + A""""A+ 1

len : A → Int
len(!) = 0
len(0 + a)  = 1 + len(a)
len(a + 1)  = 1 + len(a)

#0: A → Int
#0(!)         = 0
#0(0 + a)  = 1 + #0(a)
#0(a + 1)  = #0(a)

no1: A → A
no1 (!)       = !
no1(0 + a)  = 0 + no1(a)
no1(a + 1)  = no1(a)

Claim: Prove that for all 2 ∈ 4, len(no1(x)) = #0(x)

We go by structural induction on A.  Let 2 ∈ 4 be arbitrary.
Case A = 0 + x: 

len(no1(0 + x)) = len(0 + no1(x))         [Def of no1]
= 1 + len(no1(x)) [Def of len]
= 1 + #0(x) [By IH]
= #0(0 + x) [Def of #0]



All Binary Strings with no 1’s before 0’s
A = !""""0 + A""""A+ 1

len : A → Int
len(!) = 0
len(0 + a)  = 1 + len(a)
len(a + 1)  = 1 + len(a)

#0: A → Int
#0(!)         = 0
#0(0 + a)  = 1 + #0(a)
#0(a + 1)  = #0(a)

no1: A → A
no1 (!)       = !
no1(0 + a)  = 0 + no1(a)
no1(a + 1)  = no1(a)

Claim: Prove that for all 2 ∈ 4, len(no1(x)) = #0(x)

We go by structural induction on A.  Let 2 ∈ 4 be arbitrary.
Case A = x + 1: 

len(no1(x + 1)) = len(no1(x))         [Def of no1]
= #0(x) [By IH]
= #0(x + 1) [Def of #0]



Recursively Defined Programs (on Lists)

List = [ ]   a :: L
We’ll assume a is an integer.

Write a function
len : List → Int

that computes the length of a list.

Finish the function
append : (List, Int) → List

append([], i)       = …
append(a :: L, i) = …

which returns a list with i appended to the end



Recursively Defined Programs (on Lists)

List = [ ]   a :: L

append : (List, Int) → List
append([], i)       = [i]
append(a :: L, i) = a :: append(L, i)

We’ll assume a is an integer.

len : List → Int
len([])  = 0
len(a :: L)  = 1 + len(L)

Claim: For%all%lists%L,%and%integers%i,%if%len(L) = n,%
then%len(append(L, i)) = n + 1.



Recursively Defined Programs (on Lists)

List = [ ]   a :: L
append : (List, Int) → List
append([], i)       = i::[]
append(a :: L, i) = a :: append(L, i)

len : List → Int
len([])  = 0
len(a :: L)  = 1 + len(L)

Claim: For%all%lists%L,%and%integers%i,%if%len(L) = n,%
then%len(append(L, i)) = n + 1.

We go by structural induction on List.  Let i be an 
integer, and let L be a list.  Suppose len(L) = n.
Case L = []: 

len(append([], i)) = len(i::[]) [Def of append]
= 1 + len([]) [Def of len]
= 1 + 0 [Def of len]
= 1 [Arithmetic]



Recursively Defined Programs (on Lists)
append : (List, Int) → List
append([], i)       = i::[]
append(a :: L, i) = a :: append(L, i)

len : List → Int
len([])  = 0
len(a :: L)  = 1 + len(L)

Claim: For%all%lists%L,%and%integers%i,%if%len(L) = n,%
then%len(append(L, i)) = n + 1.

We go by structural induction on List.  Let i be an integer, 
and let L be a list.  Suppose len(L) = n.
Case L = 2 ∷ 8′: 

len(append(x :: L’, i)) = len(x :: append(L’, i)) [Def of append]
= 1 + len(append(L’, i)) [Def of len]

We know by our IH that, for all lists smaller than L,
If%len(L) = n,%then%len(append(L, i)) = n + 1

So, if len(L’) = k, then len(append(L’, i)) = k + 1



Recursively Defined Programs (on Lists)

We go by structural induction on List.  Let i be an integer, 
and let L be a list.  Suppose len(L) = n.
Case L = 2 ∷ 8′: 

len(append(x :: L’, i)) = len(x :: append(L’, i)) [Def of append]
= 1 + len(append(L’, i)) [Def of len]

= 1 + k + 1 [By IH]

= 1 + (n – 1) + 1 [By above]
= n + 1 [By above]

We know by our IH that, for all lists smaller than L,
If%len(L) = n,%then%len(append(L, i)) = n + 1

So, if len(L’) = k, then len(append(L’, i)) = k + 1

Note that n = len(L) = len(x :: L’) = 1 + len(L’) = 1 + k.


