CSE 311: Foundations of Computing

Lecture 17: Structural Induction

- An *alphabet* Σ is any finite set of characters
- The set Σ* is the set of strings over the alphabet
 Σ.

$$\sum^* = \varepsilon \sum^* \sigma$$

A STRING is EMPTY or "STRING CHAR".

- The set of strings is made up of:
 - $\epsilon \in \Sigma^*$ (ϵ is the empty string)
 - If $W \in \Sigma^*$, $\sigma \in \Sigma$, then $W\sigma \in \Sigma^*$

Palindromes are strings that are the same backwards and forwards (e.g. "abba", "tht", "neveroddoreven").

Pal = $\varepsilon | \sigma | \sigma Pal \sigma$ A PAL is EMPTY or CHAR or "CHAR PAL CHAR".

$\mathbf{B} = \varepsilon \mid 0 \mid 1 \mid \mathbf{B} + \mathbf{B}$

A BSTR is EMPTY, 0, 1, or "BSTR BSTR".

Let's write a "reverse" function for binary strings.

$rev:B \rightarrow B$

rev is a function that takes in a binary string and returns a binary string

$\mathbf{B} = \varepsilon \mid 0 \mid 1 \mid \mathbf{B} + \mathbf{B}$

A BSTR is EMPTY, 0, 1, or "BSTR BSTR".

Let's write a "reverse" function for binary strings.

rev : $B \rightarrow B$ rev(ε) = ε rev(0) = 0 rev(1) = 1 rev(a + b) = rev(b) + rev(a)

 $B = \varepsilon | 0 | 1 | B + B$ rev: $B \rightarrow B$ rev(ε) = ε rev(0) = 0 rev(1) = 1 rev(a + b) = rev(b) + rev(a)

Claim: For all binary strings X, rev(rev(X)) = X

Case ε : rev(rev(ε)) = rev(ε) = ε Def of revCase 0: rev(rev(0)) = rev(0) = 0Def of revCase 1: rev(rev(1)) = rev(1) = 1Def of rev

 $B = \varepsilon \mid 0 \mid 1 \mid B + B$ rev: $B \rightarrow B$ rev(ε) = ε rev(0) = 0 rev(1) = 1 rev(a + b) = rev(b) + rev(a)

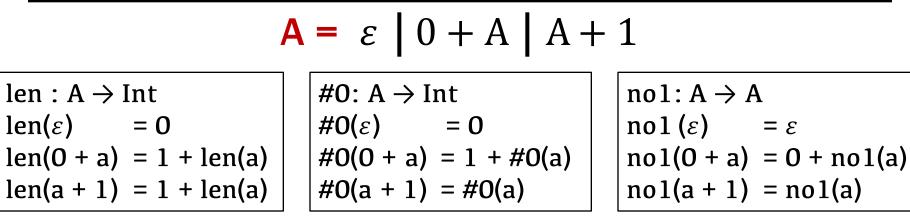
Claim: For all binary strings X, rev(rev(X)) = X

Case a + b: rev(rev(a + b)) = rev(rev(b) + rev(a)) Def of rev = rev(rev(a)) + rev(rev(b)) Def of rev = a + b By IH!

 $rev : B \rightarrow B$ $\mathbf{B} = \varepsilon \mid 0 \mid 1 \mid \mathbf{B} + \mathbf{B}$ $rev(\varepsilon) = \varepsilon$ rev(0) = 0rev(1) = 1rev(a + b) = rev(b) + rev(a)**Claim:** For all binary strings **X**, rev(rev(X)) = X We go by structural induction on B. Case ε : rev(rev(ε)) = rev(ε) = ε Def of rev **Case** 0: rev(rev(0)) = rev(0) = 0**Def of rev Case** 1: rev(rev(1)) = rev(1) = 1**Def of rev** Case a + b: rev(rev(a + b)) = rev(rev(b) + rev(a))Def of rev = rev(rev(a)) + rev(rev(b))**Def of rev** = a + bBy IH!

Since the claim is true for all the cases, it's true for all binary strings.

All Binary Strings with no 1's before 0's

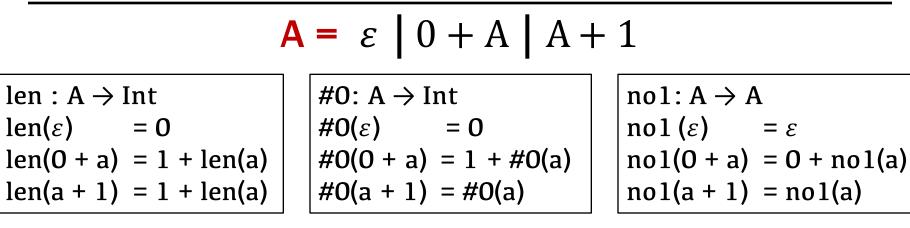


Claim: Prove that for all $x \in A$, len(no1(x)) = #0(x)

We go by structural induction on A. Let $x \in A$ be arbitrary. Case A = ε :

$len(no1(\varepsilon)) = len(\varepsilon)$	[Def of no1]
= 0	[Def of len]
= #0(ε)	[Def of #0]

All Binary Strings with no 1's before 0's

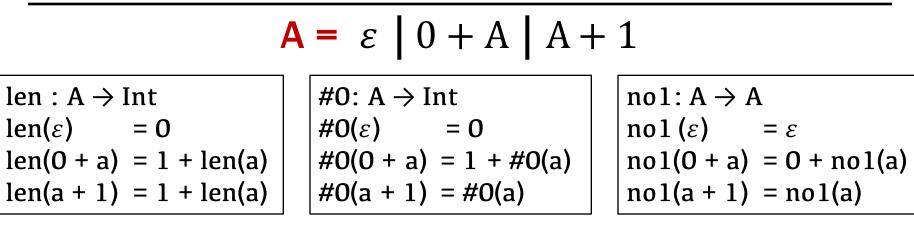


Claim: Prove that for all $x \in A$, len(no1(x)) = #0(x)

We go by structural induction on A. Let $x \in A$ be arbitrary. Case A = 0 + x:

$$len(no1(0 + x)) = len(0 + no1(x))$$
[Def of no1]
= 1 + len(no1(x)) [Def of len]
= 1 + #0(x) [By IH]
= #0(0 + x) [Def of #0]

All Binary Strings with no 1's before 0's



Claim: Prove that for all $x \in A$, len(no1(x)) = #0(x)

We go by structural induction on A. Let $x \in A$ be arbitrary. Case A = x + 1:

len(no1(x + 1)) = len(no1(x)) [Def of no1]
=
$$\#0(x)$$
 [By IH]
= $\#0(x + 1)$ [Def of $\#0$]

We'll assume a is an integer.

Write a function len : List \rightarrow Int that computes the length of a list.

We'll assume a is an integer.

len : List \rightarrow Int len([]) = 0 len(a :: L) = 1 + len(L)

```
append : (List, Int) \rightarrow List
append([], i) = [i]
append(a :: L, i) = a :: append(L, i)
```

Claim: For all lists L, and integers i, if len(L) = n, then len(append(L, i)) = n + 1.

List = [] | a :: L

len : List \rightarrow Int len([]) = 0 len(a :: L) = 1 + len(L) append : (List, Int) → List append([], i) = i::[] append(a :: L, i) = a :: append(L, i)

Claim: For all lists L, and integers i, if len(L) = n, then len(append(L, i)) = n + 1.

We go by structural induction on List. Let i be an integer, and let L be a list. Suppose len(L) = n. Case L = []:

len(append([], i)) = len(i::[]) [Def of append]= 1 + len([]) [Def of len]= 1 + 0 [Def of len]= 1 - 0 [Arithmetic]

len : List \rightarrow Intappend : (List, Int) \rightarrow Listlen([]) = 0append([], i) = i::[]len(a :: L) = 1 + len(L)append(a :: L, i) = a :: append(L, i)

Claim: For all lists L, and integers i, if len(L) = n, then len(append(L, i)) = n + 1.

We go by structural induction on List. Let i be an integer, and let L be a list. Suppose len(L) = n. Case L = x :: L':

len(append(x :: L', i)) = len(x :: append(L', i))[Def of append] = 1 + len(append(L', i)) [Def of len]

We know by our IH that, for all lists smaller than L, If len(L) = n, then len(append(L, i)) = n + 1

So, if len(L') = k, then len(append(L', i)) = k + 1

- We go by structural induction on List. Let i be an integer, and let L be a list. Suppose len(L) = n. Case L = x :: L':
 - len(append(x :: L', i)) = len(x :: append(L', i))[Def of append] = 1 + len(append(L', i)) [Def of len]
 - We know by our IH that, for all lists smaller than L, If len(L) = n, then len(append(L, i)) = n + 1
 - So, if len(L') = k, then len(append(L', i)) = k + 1
 - = 1 + k + 1 [By IH]

Note that n = len(L) = len(x :: L') = 1 + len(L') = 1 + k.

= 1 + (n - 1) + 1[By above]= n + 1[By above]