CSE 311.: Foundations of Computing

Lecture 17: Structural Induction

' A PARTOF ME 15 WHEN WE SHOULD BE CLOSEST, -mzii
. |
59“#5&”&&5‘5&%1% 5 Tmrs THE FIBONACL] saouENEl
TN 1

ey

-

TOUCH.
r RBSTRACTNG, LOOKNG AT | | | |Touon Touci WHATEVER T DIDT0 DESLRIE YOI
' J | IT COULDN'T HAVE BEEN ENOUGH.

INUMBERS AND PRTTERNS. To0CH TOOCH TOUt ToUEH TO0GH

Strings

* An alphabet X is any finite set of characters

 The set Z* is the set of strings over the alphabet
2.

— %
S*¥=¢|X'o
A STRING is EMPTY or “STRING CHAR”.

* The set of strings is made up of:
- € 2* (cis the empty string)
—IfWWex* o then Wo & X*

Palindromes

Palindromes are strings that are the same backwards and
forwards (e.g. “abba”, “tht”, “heveroddoreven”).

Pal= €|o|oPalo
A PAL is EMPTY or CHAR or “CHAR PAL CHAR”.

Recursively Defined Programs (on Binary Strings)

B=¢c¢|0|1| B+B
A BSTR is EMPTY, O, 1, or “BSTR BSTR".

Let’s write a “reverse” function for binary strings.

rev: B—->B

rev is a function that takes in a binary
string and returns a binary string

Recursively Defined Programs (on Binary Strings)

B=¢c¢|0|1| B+B
A BSTR is EMPTY, O, 1, or “BSTR BSTR".

Let’s write a “reverse” function for binary strings.

Recursively Defined Programs (on Binary Strings)

B=¢|0|1|B+B
rev:B—>B

rev(e) =€

rev(0) =

rev(1) =

rev(a + b) = rev(b) + rev(a)

Claim: For all binary strings X, rev(rev(X)) = X

Case ¢: rev(rev(€)) =rev(€)=E€ Def of rev
Case 0: rev(rev(0))=rev(0)=0 Def of rev
Case 1: rev(rev(1))=rev(1)=1 Def of rev

Recursively Defined Programs (on Binary Strings)

B=¢|0|1|B+B
rev:B—>B

rev(e) =€

rev(0) =

rev(1) =

rev(a + b) = rev(b) + rev(a)

Claim: For all binary strings X, rev(rev(X)) = X

Case a + b:
rev(rev(a + b)) = rev(rev(b) + rev(a)) Def of rev
= rev(rev(a)) + rev(rev(b)) Defofrev
=a+b By IH!

Recursively Defined Programs (on Binary Strings)

B=¢c¢|0|1]|B+B mn =

(
rev(0) =0
rev(1) =1
rev(a + b) =rev(b) + rev(a)

Claim: For all binary strings X, rev(rev(X)) = X
We go by structural induction on B.

Case s: rev(rev(€)) =rev(E)=¢€ Def of rev
Case 0: rev(rev(0))=rev(0) =0 Def of rev
Case 1: rev(rev(1))=rev(1) =1 Def of rev
Case a + b:
rev(rev(a + b)) = rev(rev(b) + rev(a)) Def of rev
= rev(rev(a)) + rev(rev(b)) Defofrev
—a+b By IH!

Since the claim is true for all the cases, it’s true for all binary strings.

All Binary Strings with no 1’s before O’s

A=¢c|0+A|A+1

len : A - Int

len(s) =0

len(0 +a) =1 +len(a)
len(a+ 1) =1 +len(a)

#0: A - Int

#0(¢) =0

#0(0 + a) =1 + #0(a)
#0(a + 1) = #0(a)

nol:A-> A

nol () =

nol(0 +a) =0+ nol(a)
nol(a+ 1) =nol(a)

Claim: Prove that for all x € A, len(no1(x)) = #0(x)

We go by structural induction on A. Let x € A be arbitrary.

Case A =¢:
len(nol(s)) = len(s)
=0
= #0(¢)

Def of nol]
Def of len]
Def of #0]

All Binary Strings with no 1’s before O’s

A=¢c|0+A|A+1
len : A - Int #0: A - Int nol:A—> A
len(s) =0 #0(<) =0 nol () =
len(0 +a) =1 +len(a) #0(0 + a) =1 + #0(a) nol(0 +a) =0+ nol(a)
len(a+ 1) =1 +len(a) #0(a + 1) = #0(a) nol(a+ 1) =nol(a)

Claim: Prove that for all x € A, len(no1(x)) = #0(x)

We go by structural induction on A. Let x € A be arbitrary.
Case A=0 + x:

len(nol(0 + x)) = len(O0 + no1(x)) Def of nol]
=1 + len(nol(x)) Def of len]
= 1 + #0(x) By IH]
= #0(0 + x) Def of #0]

All Binary Strings with no 1’s before O’s

A=¢c|0+A|A+1
len : A - Int #0: A - Int nol:A—> A
len(s) =0 #0(<) =0 nol () =
len(0 +a) =1 +len(a) #0(0 + a) =1 + #0(a) nol(0 +a) =0+ nol(a)
len(a+ 1) =1 +len(a) #0(a + 1) = #0(a) nol(a+ 1) =nol(a)

Claim: Prove that for all x € A, len(no1(x)) = #0(x)

We go by structural induction on A. Let x € A be arbitrary.
Case A=x+ 1.

len(nol(x + 1)) = len(no1(x)) Def of nol]
= #0(x) By IH]
= #0(x + 1) Def of #0]

Recursively Defined Programs (on Lists)

List=[]|a:L
We'll assume a is an integer.

Write a function
len : List - Int
that computes the length of a list.

Finish the function
append : (List, Int) - List
append([],i) =...
append(a :: L, i) =...
which returns a list with | appended to the end

Recursively Defined Programs (on Lists)

List=[]|a:L

We'll assume a is an integer.

len : List = Int

len([]) =0
len(a :: L) =1 + len(L)

append : (List, Int) - List

append([1,i) =Til
append(a :: L, i) = a :: append(L, i)

Claim: For all lists L, and integers i, if len(L) = n,
then len(append(L, i%) =n+1.

Recursively Defined Programs (on Lists)

List=[]|a:L

len : List > Int append : (List, Int) - List
len([]) =0 append([], i) =i::]]
len(a:: L) =1 +len(L) append(a :: L, i) =a :: append(L, i)

Claim: For all lists L, and integers i, if len(L) = n,
then len(append(L, i%) =n+1.

We go by structural induction on List. Leti be an
integer, and let L be a list. Suppose len(L) = n.

Case L =|]:
len(append([1, i)) = len(i::[]) Def of append]
=1 + len([]) Def of len]
=1+0 Def of len]

=1 Arithmetic]

Recursively Defined Programs (on Lists)

len : List > Int append : (List, Int) - List
len([]) =0 append([], i) =i::]]
len(a:: L) =1 +len(L) append(a :: L, i) =a :: append(L, i)

Claim: For all lists L, and integers i, if len(L) = n,
then len(append(L, i%) =n+1.

We go by structural induction on List. Leti be an integer,
and let L be a list. Suppose len(L) = n.
CaseL=x:: L"
len(append(x :: L, i)) = len(x :: append(L’, i)) [Def of append]
= 1 + len(append(L’, i)) [Def of len]
We know by our IH that, for all lists smaller than L,
If len(L) = n, thenlen(append(L, i)) =n + 1

So, if len(L’) = k, thenlen(append(L’, i)) =k + 1

Recursively Defined Programs (on Lists)

We go by structural induction on List. Leti be an integer,
and let L be a list. Suppose len(L) = n.
CaseL=x :: L"
len(append(x :: L, i)) = len(x :: append(L’, i)) [Def of append]
= 1 + len(append(L’, i)) [Def of len]

We know by our IH that, for all lists smaller than L,
If len(L) = n, thenlen(append(L, i)) =n + 1

So, if len(L’) = k, thenlen(append(L’, i)) =k + 1
=1+k+1 [By IH]

Notethatn=len(L)=len(x:: L)=1+1en(L)=1 + k.

=1+(n-1)+1 [By above]
=n+1 [By above]

