CSE 311: Foundations of Computing

Lecture 17: Structural Induction

Strings

- An alphabet ∑ is any finite set of characters
- The set Σ* is the set of strings over the alphabet Σ.

$$\Sigma^* = \varepsilon \mid \Sigma^* \sigma$$

A STRING is EMPTY or "STRING CHAR".

- The set of strings is made up of:
 - $-\epsilon \in \Sigma^*$ (ϵ is the empty string)
 - If $W \in \Sigma^*$, $\sigma \in \Sigma$, then $W\sigma \in \Sigma^*$

Palindromes

Palindromes are strings that are the same backwards and forwards (e.g. "abba", "tht", "neveroddoreven").

Pal =
$$\varepsilon | \sigma | \sigma$$
 Pal σ

A PAL is EMPTY or CHAR or "CHAR PAL CHAR".

Recursively Defined Programs (on Binary Strings)

$$\mathbf{B} = \varepsilon \mid 0 \mid 1 \mid \mathbf{B} + \mathbf{B}$$

A BSTR is EMPTY, 0, 1, or "BSTR BSTR".

Let's write a "reverse" function for binary strings.

$$rev : B \rightarrow B$$

rev is a function that takes in a binary string and returns a binary string

Recursively Defined Programs (on Binary Strings)

$$\mathbf{B} = \varepsilon \mid 0 \mid 1 \mid \mathbf{B} + \mathbf{B}$$

A BSTR is EMPTY, 0, 1, or "BSTR BSTR".

Let's write a "reverse" function for binary strings.

rev:
$$B \rightarrow B$$

rev(ε) = ε
rev(0) = 0
rev(1) = 1
rev(a + b) = rev(b) + rev(a)

Recursively Defined Programs (on Binary Strings)

B =
$$\varepsilon$$
 | 0 | 1 | B + B

 $rev : B \rightarrow B$ $rev(\varepsilon) = \varepsilon$

rev(0) = 0 rev(1) = 1

rev(a + b) = rev(b) + rev(a)

Claim: For all binary strings X, rev(rev(X)) = X

Case ε : rev(rev(ε)) = rev(ε) = ε Def of rev Case 0: rev(rev(0)) = rev(0) = 0 Def of rev Case 1: rev(rev(1)) = rev(1) = 1 Def of rev

Recursively Defined Programs (on Binary Strings)

$\mathbf{B} = \varepsilon \mid 0 \mid 1 \mid \mathbf{B} + \mathbf{B}$

rev : $B \rightarrow B$ rev(ε) = ε rev(0) = 0 rev(1) = 1 rev(a + b) = rev(b) + rev(a)

Claim: For all binary strings X, rev(rev(X)) = X

Case a + b:

rev(rev(a + b)) = rev(rev(b) + rev(a)) Def of rev = rev(rev(a)) + rev(rev(b)) Def of rev = a + b By IH!

Recursively Defined Programs (on Binary Strings)

 $\mathbf{B} = \varepsilon \mid 0 \mid 1 \mid \mathbf{B} + \mathbf{B} \quad \text{rev : B } \rightarrow \mathbf{B} \\ \text{rev(ε)} \quad = \varepsilon \\ \text{rev(0)} \quad = 0 \\ \text{rev(1)} \quad = 1 \\ \text{rev(a + b)} = \text{rev(b)} + \text{rev(a)}$

Claim: For all binary strings X, rev(rev(X)) = X

We go by structural induction on B. Case ε : rev(rev(ε)) = rev(ε) = ε

Case 0: rev(rev(0)) = rev(0) = 0 Def of rev Case 1: rev(rev(1)) = rev(1) = 1 Def of rev Case a + b: rev(rev(a + b)) = rev(rev(b) + rev(a)) Def of rev = rev(rev(a)) + rev(rev(b)) Def of rev

Def of rev

= rev(rev(a)) + rev(rev(b)) = a + bBy IH!

Since the claim is true for all the cases, it's true for all binary strings.

All Binary Strings with no 1's before 0's

$$A = \varepsilon \mid 0 + A \mid A + 1$$

Claim: Prove that for all $x \in A$, len(no1(x)) = #0(x)

We go by structural induction on A. Let $x \in A$ be arbitrary. Case $\mathbf{A} = \varepsilon$:

 $len(no1(\varepsilon)) = len(\varepsilon)$ [Def of no1] = 0 [Def of len] = #0(ε) [Def of #0]

All Binary Strings with no 1's before 0's

$$\mathbf{A} = \varepsilon \mid 0 + \mathbf{A} \mid \mathbf{A} + \mathbf{1}$$

Claim: Prove that for all $x \in A$, len(no1(x)) = #0(x)

We go by structural induction on A. Let $x \in A$ be arbitrary. Case A = 0 + x:

len(no1(0 + x)) = len(0 + no1(x)) [Def of no1] = 1 + len(no1(x)) [Def of len] = 1 + #0(x) [By IH] = #0(0 + x) [Def of #0]

All Binary Strings with no 1's before 0's

$$A = \varepsilon | 0 + A | A + 1$$

Claim: Prove that for all $x \in A$, len(no1(x)) = #0(x)

We go by structural induction on A. Let $x \in A$ be arbitrary. Case A = x + 1:

len(no1(x + 1)) = len(no1(x)) [Def of no1] = #0(x) [By IH] = #0(x + 1) [Def of #0]

Recursively Defined Programs (on Lists)

List = [] | a :: L

We'll assume a is an integer.

Write a function

len : List \rightarrow Int

that computes the length of a list.

Finish the function

append : (List, Int) \rightarrow List append([], i) = ... append(a :: L, i) = ...

which returns a list with i appended to the end

Recursively Defined Programs (on Lists)

We'll assume a is an integer.

len: List \rightarrow Int len([]) = 0

len(a :: L) = 1 + len(L)

append : (List, Int) \rightarrow List append([], i) = [i]

append(a :: L, i) = a :: append(L, i)

Claim: For all lists L, and integers i, if len(L) = n, then len(append(L, i)) = n + 1.

Recursively Defined Programs (on Lists)

$$\begin{split} len: List &\rightarrow Int & append: (List, Int) \rightarrow List \\ len([]) &= 0 & append([], i) &= i::[] \\ len(a:: L) &= 1 + len(L) & append(a:: L, i) = a:: append(L, i) \end{split}$$

Claim: For all lists L, and integers i, if len(L) = n, then len(append(L, i)) = n + 1.

We go by structural induction on List. Let i be an integer, and let L be a list. Suppose len(L) = n. Case L = $\lceil \rceil$:

Recursively Defined Programs (on Lists)

```
\begin{array}{ll} len: List \rightarrow Int & append: (List, Int) \rightarrow List \\ len([]] = 0 & append([], i) = i::[] \\ len(a::L) = 1 + len(L) & append(a::L, i) = a:: append(L, i) \end{array}
```

Claim: For all lists L, and integers i, if len(L) = n, then len(append(L, i)) = n + 1.

We go by structural induction on List. Let i be an integer, and let L be a list. Suppose len(L) = n.

Case L = x :: L':

```
\begin{split} \operatorname{len}(\operatorname{append}(x::L',i)) &= \operatorname{len}(x::\operatorname{append}(L',i)) & \quad [\operatorname{Def} \ \operatorname{of} \ \operatorname{append}] \\ &= 1 + \operatorname{len}(\operatorname{append}(L',i)) & \quad [\operatorname{Def} \ \operatorname{of} \ \operatorname{len}] \end{split}
```

We know by our IH that, for all lists smaller than L, If len(L) = n, then len(append(L, i)) = n + 1

So, if len(L') = k, then len(append(L', i)) = k + 1

Recursively Defined Programs (on Lists)

We go by structural induction on List. Let i be an integer, and let L be a list. Suppose $\mathrm{len}(L)=n$.

Case L = x :: L':

```
len(append(x :: L', i)) = len(x :: append(L', i))  [Def of append]
= 1 + len(append(L', i)) [Def of len]
```

We know by our IH that, for all lists smaller than L, If len(L) = n, then len(append(L, i)) = n + 1

So, if len(L') = k, then len(append(L', i)) = k + 1

$$= 1 + k + 1$$
 [By IH]

Note that
$$n = len(L) = len(x :: L') = 1 + len(L') = 1 + k$$
.
= 1 + (n - 1) + 1 [By above]
= n + 1 [By above]