Adam Blank Spring 2016

Foundations of Computing I

* All slides are a combined effort between previous instructors of the course

We know (by IH)...

 $3 \mid 2^{2k} - 1$

...which means...

 $2^{2k} - 1 = 3j$

We're trying to get..

 $3 \mid 2^{2(k+1)} - 1$

..which is true if...

 $2^{2(k+1)} - 1 = 3k$

Administrivia

Token verifications should have been e-mailed to you!

The midterm will be on Wed, May 4 from 4:30pm - 6:00pm in JHN 102

If you cannot make this time, and you haven't already e-mailed me, you need to tell me right after lecture.

There will be two review sessions:

- Saturday from 1pm 3pm in EEB 105
- Tuesday from 4:30pm 6:30pm in EEB 105

Prove 3 | $2^{2n} - 1$ for all $n \ge 0$.

Let P(n) be "3 | $2^{2n} - 1$ ". We go by induction on n.

Base Case (n=0): Note that $2^{2\cdot 0} - 1 = 2^0 - 1 = 1 - 1 = 0$.

We know $3 \mid 0$, by definition of divides, because $3 \cdot 0 = 0$. So, P(0) is true.

<u>Induction Hypothesis:</u> Suppose P(k) is true for some $k ∈ \mathbb{N}$.

 $\underline{Induction\ Step:}\ We\ want\ to\ show\ P(k+1).\ That\ is,\ WTS\ 3\mid 2^{2(k+1)}-1.$

Note that $2^{2(k+1)} - 1 = 2^{2k+2} - 1$

 $=(2^{2k})(2^2)-1$ [Algebra]

 $=(2^{2k}-1+1)(2^2)-1$ [Algebra]

By IH, we know 3 | 2^{2k} – 1. So, by definition of divides, we

know $2^{2k} - 1 = 3j$ for some j.

=(3j+1)(4)-1=3(4j+1)[Algebra]

So, by definition of divides, 3 | $2^{2(k+1)} - 1$.

This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all natural numbers by induction.

Prove $3^n \ge n^2$ for all $n \ge 3$.

Let P(n) be " $3^n \ge n^2$ ". We go by induction on n.

Base Case (n=3): Note that $3^3 = 27 \ge 9 = 3^2$. So, P(3) is true.

<u>Induction Hypothesis:</u> Suppose P(k) is true for some k ≥ 3.

Induction Step: We want to show P(k + 1).

Note that $3^{k+1} = 3(3^k)$

 $\geq 3(k^2)$ [By IH]

 $=k^2+k\cdot k+k^2$ [Algebra]

 $\geq k^2 + 2 \cdot k + k^2 \quad [k \geq 2]$

 $\geq k^2 + 2 \cdot k + 1^2 \quad [k \geq 1]$

 $\geq k^2 + 2k + 1$

This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all $n \ge 3$ by induction.

Prove $2n^3 + 2n - 5 \ge n^2$ for all $n \ge 2$.

Let P(n) be " $2n^3 + 2n - 5 \ge n^2$ ". We go by induction on n.

Base Case (n=2): Note that $2(2^3) + 2(2) - 5 = 15 \ge 4 = 2^2$

<u>Induction Hypothesis:</u> Suppose the claim is true for some $k \geq 2$.

Induction Step: We want to show P(k + 1).

Note that $2(k+1)^3 + (2k+1) - 5 = 2(k+1)(k^2 + 2k + 1) + (2k+1) - 5$ $= 2(k^3 + 2k^2 + k + k^2 + 2k + 1) + (2k + 1) - 5$

 $= 2k^3 + 4k^2 + 2k + 2k^2 + 4k + 2 + (2k + 1) - 5$ [Algebra] $=2k^3+6k^2+6k+2+(2k+1)-5$

 $= (2k^3 + 2k - 5) + 6k^2 + 6k + 3$ $\geq k^2 + 6k^2 + 6k + 3 = 7k^2 + 6k + 3$ [By IH]

 $=(k^2+2k+1)+6k^2+4k+3$ [Algebra] $= (k+1)^2 + 6k^2 + 4k + 3$ We know (by IH)... $2k^3 + 2k - 5 \ge k^2$ [k ≥ 2]

We're trying to get... This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all $n \ge 2$ by induction.

 $2(k+1)^3+2(k+1)-5 \ge (k+1)^2$ $(k+1)^2 = k^2 + 2k + 1$

CSE 311: Foundations of Computing

Lecture 15: Strong Induction

We know (by IH)...

 $3^k \ge k^2$

We're trying to get...

 $3^{k+1} \ge (k+1)^2$

 $= k^2 + 2k + 1$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$P(0) \\ \forall k (P(k) \rightarrow P(k+1))$$

 $\therefore \forall n P(n)$

How does this technique prove P(5)?

First, we prove P(0).

Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$.

Since P(0) is true and P(0) \rightarrow P(1), by Modus Ponens, P(1) is true. Since P(n) \rightarrow P(n+1) for all n, we have P(1) \rightarrow P(2).

Since P(1) is true and $P(1) \rightarrow P(2)$, by Modus Ponens, P(2) is true.

Domain: Natural Numbers

(MP: 2, 1, 3)

(MP: 2, 1, 3, 4)

(MP: 2, 1, 3, 4, 5)

Induction Is A Rule of Inference

"Induction"			Notice how when we
1.	P(0)	("Given")	use regular induction,
2.	$\forall n \ (P(n) \rightarrow P(n+1))$	("Given")	we're already proving
3.	P(1)	(MP: 2, 1)	the things necessary to
4.	P(2)	(MP: 2, 3)	use strong induction.
5.	P(3)	(MP: 2, 4)	
6.	P(4)	(MP: 2, 5)	This is no extra work
"			with a benefit!
"Strong Induction"			
1.	P(0)		("Given")
2.	$\forall n ((P(0) \land P(1) \land \cdots \land P(n)))$	$P(n) \to P(n +$	- 1)) ("Given")
3	P(1)		(MP· 2 1)

Strong Induction

$$\begin{split} &P(0) \\ &\forall k \; \Big(\Big(P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k) \Big) \to P(k+1) \Big) \end{split}$$

 $\therefore \forall n P(n)$

Strong Induction English Proof

4. P(2)

5. P(3)

6. P(4)

- 1. By induction we will show that P(n) is true for every $n \ge 0$
- **2**. Base Case: Prove P(0)
- 3. Inductive Hypothesis: Assume that for some arbitrary integer $k \ge 0$, P(j) is true for every j from 0 to k
- 4. Inductive Step: Prove that P(k + 1) is true using the Inductive Hypothesis (that P(j) is true for all values $\leq k$)
- 5. Conclusion: Result follows by induction

Every $n \ge 2$ can be expressed as a product of primes.

Let P(n) be " $n = p_0 p_1 \cdots p_j$, where p_0, p_1, \dots, p_j are prime."

We go by induction on n.

<u>Base Case (n=2)</u>: Note that 2 is prime (which means it's a product of primes). <u>Induction Hypothesis</u>: Suppose that P(2), P(3), ..., P(k – 1) are true for some $k \ge 2$.

Induction Step: We go by cases.

Case 1 (k is prime):

Then, since \boldsymbol{k} is prime, \boldsymbol{k} is a product of primes.

Case 2 (k is composite):

Then, by definition of composite, we have non-trivial 1 < a, b < k such that k = ab. Since a and b are between b and b and b are true. So, we have:

 $a = p_0 p_1 \cdots p_j$ and $b = p_{j+1} p_{j+2} \cdots p_{j+\ell}$

Then, $\mathbf{k} = \mathbf{a}\mathbf{b} = p_0 p_1 \cdots p_j p_{j+1} p_{j+2} \cdots p_{j+\ell}$

So, k can be expressed as a product of primes. So, P(n) is true for all $n \ge 2$ is true by induction. We know (by IH)...

All numbers smaller than k can be expressed as a product of primes.

We're trying to get...

k can be expressed as a product of primes.