Adam Blank Spring 2016

Foundations of
Computing |

* All slides are a combined effort between
previous instructors of the course



Administrivia

Token verifications should have been e-mailed to you!

The midterm will be on Wed, May 4 from 4:30pm - 6:00pm in
JHN 102

If you cannot make this time, and you haven’t already e-mailed
me, you need to tell me right after lecture.

There will be two review sessions:
e Saturday from 1pm - 3pm in EEB 105
* Tuesdayfrom 4:30pm - 6:30pm in EEB 105
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Prove 3 | 22n- 1 foralln 2 0.
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Let.be@ﬁe go Bi; induction on n
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This is exactly P(k + 1). So,P(k) - P(k + 1).

So, the claim is true for all nasral-aumbers by induction.
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Prove 3" 2 n2foralln 2 3.

Let P(n) be “3™ > n?”.We go by induction on n.
Base Case (n=3): Notethat33 = 27 > 9 = 32. So, P(3) is true.

Induction Hypothesis: Suppose i} true for somek >

Induction Step: We want to show P(k + 1).

Note that 3¥+1 = 3(3k) [Algebral]
> 3(k?) [By IH] We know (by IH)...
— k2 + k- k+ k2 [Algebral 3k > k2
>k?4+2 -k+k? [k22]
> k%242 -k+1?% [k>1] We're trying to get...
> k%2+ 2k +1 3k+1 > (k + 1)2

=k*+2k + 1

This is exactly P(k + 1). So,P(k) - P(k + 1).

So,the claim is true for all natural numbers by induction.



Prove 2n3 +2n - 52 n2foralln 2 2.

Let P(n) be “2n3 + 2n — 5 = n?".We go by induction on n.

Base Case (n=2):

Induction Hypothesis:

Induction Step: We want to show P(k + 1).

We know (by IH)...

This is exactly P(k + 1). So,P(k) - P(k + 1). We're trying to get...

So,the claim is true for all natural numbers by induction.



Prove 2n3 +2n - 52 n2foralln 2 2.

Let P(n) be “2n3 + 2n — 5 = n?".We go by induction on n.
Base Case (n=2): Notethat2(23) + 2(2) — 5= 15 > 4 = 22

Induction Hypothesis: Suppose the claim is true for some k > 2.

Induction Step: We want to show P(k + 1).

Note that 2(k+ 1)3+Qk+1)—-5=2(k + Dk* +2k+1)+ 2k +1) =5
=2(k3+2k*+k+k*+2k+1)+QRk+1)-5
=2k3 +4k*+ 2k +2k* +4k +2+ 2k +1) =5
=2k3+6k*+6k+2+ 2k +1) -5
= (k3 + 2k —5) + 6k*+ 6k +3
[By IH] > k2 + 6k? + 6k + 3 =7k*+ 6k + 3

= (k?*+2k+ 1)+ 6k?*+4k +3

[Algebra]

[Algebral —— _ (k + 1)* + 6k* + 4k + 3 | We know (by IH)...
[k > 2] > (k + 1)? 2k + 2k — 5 = k*
This is exactly P(k + 1). So,P(k) - P(k + 1). We're trying to get...

2(k+ 1D)342(k+1) =5 = (k+ 1)?

So,the claim is true for all natural numbers by induction. 5 s
(k+ 1) =k*+2k+1



CSE 311.: Foundations of Computing

Lecture 15: Strong Induction




Induction Is A Rule of Inference

Domain: Natural Numbers P (0)
Vk(P(k) » P(k+1))

.V nPn)

How does this technique prove P(5)?
< v v v v

By Induction: P(0) P(0) - P(1) P(1) = P(2) P(2) = P(3) P(3) = P(4) P(4) = P(5)

77N 7N 7N 7N N
To Prove: P(O) P(l) P(Z) P(S) P(4) P(S)

First, we prove P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Domain: Natural Numbers

Induction Is A Rule of Inference...Again

1. P(0) (“Given”)

vn (P(n) » P(n+1)) (“Given”)

P . &y
%» (MP: 2, 3)
(MP: 2, 4)

P(4) (MP: 2, 5)

. P &)
NOR e el 7 6.-)



Domain: Natural Numbers

Induction Is A Rule of Inference

“Induction” .
Notice how when we
1. P(0) (“Given”) use regular induction,
2. Y7n(P(n) > P(n+1)) (“Given”) we’re already proving
3. P(1) (MP: 2, 1) the things necessary to
4. P(2) (MP: 2, 3) use strong induction.
5 P (MP: 2, 4)
6. P4) (MP: 2, 5) This is no extra work
with a benefit!
“Strong Ir:d/rction”
1. P(0) (“Given”)
2. vn (P(O)AP(DA--AP(MR) > P(n+1)) (“Given”)
3. PQ1) (MP: 2, 1)
4. P(2) (MP: 2, 1, 3)
5 P@Q3) (MP: 2, 1, 3, 4)
6. P4) (MP: 2,1, 3,4,5)



Strong Induction

P(0)
vk ((BW@MP(!{)) - P(k + 1))

s~ Vn P(n)



Strong Induction English Proof

1.

2.

By induction we will show that P(n) is true for
everyn = 0

Base Case: Prove P(0)

Inductive Hypothesis:
Assume that for some arbitrary integer k = 0,
P(j) is true for every j from 0 to k

Inductive Step:
Prove that P(k + 1) is true using the Inductive
Hypothesis (that P(j) is true for all values < k)

Conclusion: Result follows by induction



Every n = 2 can be expressed as a product of primes.

Let P(n) be “n = pop; - pj, where py, 4, ..., pj are prime. )
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Every n = 2 can be expressed as a product of primes.

Let P(n) be “n = pop; - pj, where py, p1, ..., pj are prime.

We go by induction on n.

Base Case (n=2): Notethat 2 is prime (which means it’s a product of primes).

Induction Hypothesis: Suppose that P(2), P(3), ..., P(k-1) are true for some k = 2.

Induction Step: We go by cases.

Case 1 (kis prime):

Then, since kis prime, k is a product of primes.
Case 2 (kis composite):

Then, by definition of composite, we have non-trivial
1 < a,b < ksuchthatk =ab. Since aand b are between 2

and k - 1, we know P(2) and P(k - 1) are true. So, we have:

a=pop1--pjand b =pji1Pji2 " Dj+e
Then, k=ab=pop; " PjPj+1Pj+2 " Pj+e
So, k can be expressed as a product of primes.
So, P(n) is true for all n = 2 is true by induction.

We know (by IH)...

All numbers
smaller than k can
be expressed as a
product of primes.

We're trying to get...

k can be expressed
as a product of
primes.



