

Foundations of Computing I

* All slides are a combined effort between previous instructors of the course

CSE 311: Foundations of Computing

Lecture 16: Recursively Defined Sets

Strong Induction

$$P(0)$$

 $\forall k \left(\left(P(0) \land P(1) \land P(2) \land \dots \land P(k) \right) \rightarrow P(k+1) \right)$

- $\therefore \forall n P(n)$
- **1.** By induction we will show that P(n) is true for every $n \ge 0$
- 2. Base Case: Prove P(0)
- 3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, P(j) is true for every j from 0 to k
- 4. Inductive Step: Prove that P(k + 1) is true using the Inductive Hypothesis (that P(j) is true for all values []k)
- 5. Conclusion: Result follows by induction

Fibonacci Numbers

$$f_0 = 0$$

 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$

Bounding the Fibonacci Numbers

Define
$$f_n$$
 as: $f_0 = 0$
 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$

Theorem:

$$2^{n/2-1} \le f_n$$
 and $f_n < 2^n$ for all $n \ge 2$

Proof:

Let P(n) be " $2^{n/2-1} \le f_n$ and $f_n < 2^n$ " for all $n \ge 2$. We go by strong induction on n.

Base Case:
$$2^{2/2-1} = 2^0 = 1 \le 0 + 1 = f_2$$
, and $f_2 = 0 + 1 = 1 < 4 = 2^2$. So, P(2) is true.

Induction Hypothesis:

Suppose P(j) for all integers j s.t. $2 \le j \le k$ for some $k \ge 2$.

Induction Step: We want to show $2^{(k+1)/2-1} \le f_{k+1}$ and $f_{k+1} < 2^n$

Bounding the Fibonacci Numbers

```
Define f_n as: f_0 = 0
                                                               Theorem:
                      f_1 = 1
                                                                    2^{n/2-1} \le f_n and f_n < 2^n
                      f_n = f_{n-1} + f_{n-2} for all n \ge 2
                                                                     for all n \ge 2
Induction Step: We want to show 2^{(k+1)/2-1} \le f_{k+1} and f_{k+1} < 2^n
If k+1=3, 2^{3/2-1} = 2^{1/2} \le 2 = 1 + 1 = f_3, and
           f_3 = 1 + 1 = 2 < 8 = 2^3. So, P(3) is true.
Otherwise, note that f_{k+1} = f_k + f_{k-1} by definition.
Taking each inequality separately:
f_{k+1} = f_k + f_{k-1} < 2^k + 2^{k-1} (by IH)
                  < 2^{k} + 2^{k} (2^{k-1} < 2^{k})
                  = 2^{k+1}
f_{k+1} = f_k + f_{k-1} \ge 2^{k/2-1} + 2^{(k-1)/2-1}
                                         (by IH)
                 \geq 2^{(k-1)/2-1} + 2^{(k-1)/2-1} (Because 2^{k/2-1} > 2^{(k-1)/2-1})
                           = 2(2^{(k-1)/2-1})
                                                     (Combining terms)
                      = 2^{2/2+(k-1)/2-1}
                                                     (Multiplying)
                      = 2^{(k+1)/2-1}
```

So, the claim is true by strong induction.

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for gcd(a,b) with a > b. Then, $a \ge f_{n+1}$.

We go by strong induction on n.

Let P(n) be "gcd(a,b) with a > b takes n steps \rightarrow a \geq f_{n+1}" for all n \geq 1.

Base Case:

If Euclid's Algorithm on a, b, with a > b, takes 1 step, then it must be the case that b | a.

Note that $f_2 = 1$.

Note that if a were 0, then gcd(0, b), which takes zero steps. So, the smallest possible value for a is 1, which is f_2 .

Induction Hypothesis: Suppose P(j) for all integers j s.t. $1 \le j \le k$ for some $k \ge 1$.

Induction Step: We want to show if gcd(a,b) takes k+1 steps, then $a \ge f_{k+2}$. **If k = 2**, note that a > 1, because gcd(1, b) takes one step. Also, $f_3 = 2$.

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for gcd(a,b) with a > b. Then, $a \ge f_{n+1}$.

Since the algorithm took k+1 steps, let's give them names:

Say
$$r_{k+1}$$
 = a and r_k = b, and r_i = r_{i-1} mod r_{i-2} .
So, gcd(a, b) = gcd(r_{k+1} , r_k)
= gcd(r_k , r_k mod r_{k+1}) = gcd(r_k , r_{k-1})
= gcd(r_{k-1} , r_{k-1} mod r_k) = gcd(r_{k-1} , r_{k-2})
= ...

we have:

$$r_{k+1} = q_k r_k + r_{k-1}$$

$$r_k = q_{k-1} r_{k-1} + r_{k-2}$$
...
$$r_3 = q_2 r_2 + r_1$$

$$r_2 = q_1 r_1$$

Note that $q_i \ge 1$, $r_i \ge 1$.

Writing these as equations, Note that after one iteration of the algorithm, we're left with $gcd(r_k, r_{k-1})$ which takes k steps. By the IH, $r_k \ge f_{k+1}$. So, $r_{k+1} = q_k r_k + r_{k-1}$ (by gcd algorithm) $\geq q_k f_{k+1} + f_k$ (by IH) $\geq f_{k+1} + f_k \qquad (q_k \geq 1)$ $\geq f_{k+2}$ (definition of f)

Recursive Definition of Sets

Recursive Definition

- Basis Step: 0 ∈ S
- Recursive Step: If $x \in S$, then $x + 2 \in S$
- Exclusion Rule: Every element in S follows from basis steps and a finite number of recursive steps.

Recursive Definitions of Sets

Basis: $6 \in S$, $15 \in S$

Recursive: If $x,y \in S$, then $x+y \in S$

Basis: $[1, 1, 0] \in S, [0, 1, 1] \in S$

Recursive: If $[x, y, z] \in S$, then $[\alpha x, \alpha y, \alpha z] \in S$

If $[x_1, y_1, z_1] \in S$ and $[x_2, y_2, z_2] \in S$, then

 $[x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S.$

Powers of 3:

Basis: $1 \in S$

Recursive: If $x \in S$, then $3x \in S$.