ÇFF

Foundations of

 Computing I* All slides are a combined effort between previous instructors of the course

CSE 311: Foundations of Computing

Lecture 16: Recursively Defined Sets

Strong Induction

$P(0)$
$\forall k((P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(k)) \rightarrow P(k+1))$
$\therefore \forall n P(n)$

1. By induction we will show that $P(n)$ is true for every $n \geq 0$
2. Base Case: Prove $P(0)$
3. Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq 0, P(j)$ is true for every j from 0 to k
4. Inductive Step:

Prove that $P(k+1)$ is true using the Inductive Hypothesis (that $P(j)$ is true for all values k)
5. Conclusion: Result follows by induction

Fibonacci Numbers

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
\end{aligned}
$$

Bounding the Fibonacci Numbers

Define f_{n} as: $f_{0}=0$
$\mathrm{f}_{1}=1$
$f_{n}=f_{n-1}+f_{n-2}$ for all $n \geq 2$

Theorem: $2^{n / 2-1} \leq f_{n}$ and $f_{n}<2^{n}$ for all $\mathrm{n} \geq 2$

Proof:
Let $P(n)$ be " $2^{n / 2-1} \leq f_{n}$ and $f_{n}<2^{n "}$ for all $n \geq 2$.
We go by strong induction on n.
Base Case: $2^{2 / 2-1}=2^{0}=1 \leq 0+1=f_{2}$, and
$f_{2}=0+1=1<4=2^{2}$. So, $P(2)$ is true.
Induction Hypothesis:
Suppose $P(j)$ for all integers j s.t. $2 \leq j \leq k$ for some $k \geq 2$.
Induction Step: We want to show $2^{(k+1) / 2-1} \leq f_{k+1}$ and $f_{k+1}<2^{n}$

Bounding the Fibonacci Numbers

Define f_{n} as: $f_{0}=0$
$\mathrm{f}_{1}=1$
$\mathrm{f}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}-1}+\mathrm{f}_{\mathrm{n}-2}$ for all $\mathrm{n} \geq 2$

Theorem:

 $2^{n / 2-1} \leq f_{n}$ and $f_{n}<2^{n}$ for all $\mathrm{n} \geq 2$Induction Step: We want to show $2^{(k+1) / 2-1} \leq f_{k+1}$ and $f_{k+1}<2^{n}$
If $\mathbf{k}+\mathbf{1}=\mathbf{3}, 2^{3 / 2-1}=2^{1 / 2} \leq 2=1+1=f_{3}$, and

$$
f_{3}=1+1=2<8=2^{3} . \text { So, } P(3) \text { is true. }
$$

Otherwise, note that $f_{k+1}=f_{k}+f_{k-1}$ by definition.
Taking each inequality separately:

$$
\begin{aligned}
f_{k+1}=f_{k}+f_{k-1} & <2^{k}+2^{k-1} & & (\text { by IH }) \\
& <2^{k}+2^{k} & & \left(2^{k-1}<2^{k}\right) \\
& =2^{k+1} & &
\end{aligned}
$$

$$
\begin{array}{rlr}
f_{k+1}=f_{k}+f_{k-1} \geq 2^{k / 2-1}+2^{(k-1) / 2-1} & (\text { by } I H) & \\
& \geq 2^{(k-1) / 2-1}+2^{(k-1) / 2-1} & \text { (Because } \left.2^{k / 2-1}>2^{(k-1) / 2-1}\right) \\
& =2\left(2^{(k-1) / 2-1}\right) & \\
& =2^{2 / 2+(k-1) / 2-1} & \\
-7(k+1) / 2-1 & & \text { (Multiplying) }
\end{array}
$$

$$
=2^{(k+1) / 2-1} \quad \text { So, the claim is true by strong induction. }
$$

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\operatorname{gcd}(a, b)$ with $a>b$. Then, $a \geq f_{n+1}$.

We go by strong induction on n .
Let $P(n)$ be " $g c d(a, b)$ with $a>b$ takes n steps $\rightarrow a \geq f_{n+1}$ " for all $n \geq 1$.

Base Case:

If Euclid's Algorithm on a, b, with $a>b$, takes 1 step, then it must be the
case that $\mathrm{b} \mid \mathrm{a}$.
Note that $\mathrm{f}_{2}=1$.
Note that if a were 0 , then $\operatorname{gcd}(0, b)$, which takes zero steps. So, the smallest possible value for a is 1 , which is f_{2}.
Induction Hypothesis: Suppose $P(j)$ for all integers $\mathrm{j} . \mathrm{t} .1 \leq \mathrm{j} \leq \mathrm{k}$ for some $\mathrm{k} \geq 1$.

Induction Step: We want to show if $\operatorname{gcd}(a, b)$ takes $k+1$ steps, then $a \geq f_{k+2}$. If $\mathbf{k}=\mathbf{2}$, note that $\mathrm{a}>1$, because $\operatorname{gcd}(1, b)$ takes one step. Also, $f_{3}=2$.

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps

 for $\operatorname{gcd}(a, b)$ with $a>b$. Then, $a \geq f_{n+1}$.Since the algorithm took $k+1$ steps, let's give them names:
Say $r_{k+1}=a$ and $r_{k}=b$, and $r_{i}=r_{i-1} \bmod r_{i-2}$.
So, $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{k+1}, r_{k}\right)$

$$
\begin{aligned}
& =\operatorname{gcd}\left(r_{k}, r_{k} \bmod r_{k+1}\right)=\operatorname{gcd}\left(r_{k}, r_{k-1}\right) \\
& =\operatorname{gcd}\left(r_{k-1}, r_{k-1} \bmod r_{k}\right)=\operatorname{gcd}\left(r_{k-1}, r_{k-2}\right) \\
& =\ldots
\end{aligned}
$$

Writing these as equations, we have:

$$
\begin{aligned}
r_{k+1} & =q_{k} r_{k}+r_{k-1} \\
r_{k} & =q_{k-1} r_{k-1}+r_{k-2} \\
& \cdots \\
r_{3} & =q_{2} r_{2}+r_{1} \\
r_{2} & =q_{1} r_{1}
\end{aligned}
$$

Note that after one iteration of the algorithm, we're left with $\operatorname{gcd}\left(r_{k}, r_{k-1}\right)$ which takes k steps. By the IH, $r_{k} \geq f_{k+1}$. So,

$$
\begin{array}{rlrl}
r_{k+1}= & q_{k} r_{k}+r_{k-1} & & \text { (by gcd algorithm) } \\
\geq q_{k} f_{k+1}+f_{k} & & (\text { by IH) } \\
& \geq f_{k+1}+f_{k} & & \left(q_{k} \geq 1\right) \\
& \geq f_{k+2} & & (\text { definition of } f)
\end{array}
$$

Note that $q_{i} \geq 1, r_{i} \geq 1$.

Recursive Definition of Sets

Recursive Definition

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x+2 \in S$
- Exclusion Rule: Every element in S follows from basis steps and a finite number of recursive steps.

Recursive Definitions of Sets

Basis: $\quad 6 \in S, 15 \in S$
Recursive: If $x, y \in S$, then $x+y \in S$

Basis: $\quad[1,1,0] \in S,[0,1,1] \in S$
Recursive: If $[x, y, z] \in S$, then $[\alpha x, \alpha y, \alpha z] \in S$
If $\left[x_{1}, y_{1}, z_{1}\right] \in S$ and $\left[x_{2}, y_{2}, z_{2}\right] \in S$, then
$\left[x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right] \in S$.

Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.

