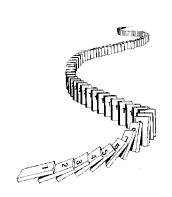
Adam Blank Spring 2016

Foundations of Computing I

* All slides are a combined effort between previous instructors of the course

CSE 311: Foundations of Computing

Lecture 16: Recursively Defined Sets



Strong Induction

P(0)

 $\forall k \ \Big(\big(P(0) \land P(1) \land P(2) \land \dots \land P(k) \big) \to P(k+1) \Big)$

- $\therefore \forall n P(n)$
- **1.** By induction we will show that P(n) is true for every $n \ge 0$
- 2. Base Case: Prove P(0)
- 3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, P(j) is true for every j from 0 to k
- 4. Inductive Step: Prove that P(k+1) is true using the Inductive Hypothesis (that P(j) is true for all values [k]
- 5. Conclusion: Result follows by induction

Fibonacci Numbers

$$\begin{split} f_0 &= 0 \\ f_1 &= 1 \\ f_n &= f_{n-1} + f_{n-2} \ \text{ for all } n \geq 2 \end{split}$$

Bounding the Fibonacci Numbers

Define
$$f_n$$
 as:
$$\begin{array}{ll} f_0=0 & \text{Theorem:} \\ f_1=1 & \\ f_n=f_{n-1}+f_{n-2} \text{ for all } n \geq 2 \end{array}$$

$$\begin{array}{ll} Theorem: \\ 2^{n/2-1} \leq f_n \text{ and } f_n < 2^n \\ \text{for all } n \geq 2 \end{array}$$

Proof:

Let P(n) be " $2^{n/2-1} \le f_n$ and $f_n < 2^n$ " for all $n \ge 2$. We go by strong induction on n.

Base Case: $2^{2/2-1} = 2^0 = 1 \le 0 + 1 = f_2$, and $f_2 = 0 + 1 = 1 < 4 = 2^2$. So, P(2) is true.

Induction Hypothesis:

Suppose P(j) for all integers j s.t. $2 \le j \le k$ for some $k \ge 2$.

Induction Step: We want to show $2^{(k+1)/2-1}\! \le f_{k+1}$ and $f_{k+1}\! < 2^n$

Bounding the Fibonacci Numbers

 $= 2^{2/2+(k-1)/2-1}$

 $= 2^{(k+1)/2-1}$

$$\begin{array}{ll} \text{Define } f_n \text{ as:} & f_0 = 0 \\ f_1 = 1 \\ f_n = f_{n-1} + f_{n-2} \text{ for all } n \geq 2 \\ \hline \text{Induction Step:} & \text{We want to show } 2^{(k+1)/2 - 1} \leq f_n \text{ and } f_n < 2^n \\ \hline \text{If } k+1=3, 2^{3/2-1} = 2^{1/2} \leq 2 = 1 + 1 = f_3, \text{ and} \\ f_3 = 1 + 1 = 2 < 8 = 2^3. \text{ So, P(3) is true.} \\ \hline \text{Otherwise, note that } f_{k+1} = f_k + f_{k-1} \text{ by definition.} \\ \hline \text{Taking each inequality separately:} \\ f_{k+1} = f_k + f_{k-1} < 2^k + 2^{k-1} & \text{(by IH)} \\ & < 2^k + 2^k & (2^{k-1} < 2^k) \\ & = 2^{(k+1)/2-1} & \text{(Because } 2^{k/2-1} > 2^{(k-1)/2-1}) \\ & = 2(2^{(k-1)/2-1}) & \text{(Combining terms)} \\ \end{array}$$

(Multiplying)

So, the claim is true by strong induction.

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for gcd(a,b) with a > b. Then, $a \ge f_{n+1}$.

We go by strong induction on n.

Let P(n) be "gcd(a,b) with a > b takes n steps \rightarrow a \geq f_{n+1} " for all $n \geq 1$.

If Euclid's Algorithm on a, b, with a > b, takes 1 step, then it must be the case that b | a.

Note that $f_2 = 1$.

Note that if a were 0, then gcd(0, b), which takes zero steps. So, the smallest possible value for a is 1, which is f_2 .

Induction Hypothesis: Suppose P(j) for all integers j s.t. $1 \le j \le k$ for some

Induction Step: We want to show if gcd(a,b) takes k+1 steps, then $a \ge f_{k+2}$ If k = 2, note that a > 1, because gcd(1, b) takes one step. Also, $f_3 = 2$.

Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for gcd(a,b) with a > b. Then, $a \ge f_{n+1}$.

Since the algorithm took k+1 steps, let's give them names:

$$\begin{split} \text{Say } r_{k+1} &= \text{a and } r_k = \text{b, and } r_i = r_{i-1} \text{ mod } r_{i-2}. \\ \text{So, } \gcd(\text{a, b}) &= \gcd(r_{k+1,} r_k) \\ &= \gcd(r_{k}, r_k \text{ mod } r_{k+1}) = \gcd(r_k, r_{k-1}) \\ &= \gcd(r_{k-1}, r_{k-1} \text{ mod } r_k) = \gcd(r_{k-1}, r_{k-2}) \\ &- \end{split}$$

Writing these as equations, Note that after one iteration of the algorithm, we're left with $gcd(r_k, r_{k-1})$ which takes k steps.

 $r_{k+1} = q_k r_k + r_{k-1}$ By the IH, $r_k \ge f_{k+1}$. So, $r_k = q_{k-1}r_{k-1} + r_{k-2}$

 $r_{k+1} = q_k r_k + r_{k-1}$ (by gcd algorithm) (by IH)

 $\geq q_k f_{k+1} + f_k$ $r_3 = q_2 r_2 + r_1$ $\geq f_{k+1} + f_k$ $(q_k \ge 1)$

 $r_2 = q_1 r_1$ (definition of f) $\geq f_{k+2}$ Note that $q_i \ge 1$, $r_i \ge 1$.

Recursive Definition of Sets

Recursive Definition

Basis Step: 0 ∈ S

• Recursive Step: If $x \in S$, then $x + 2 \in S$

· Exclusion Rule: Every element in S follows from basis steps and a finite number of recursive steps.

Recursive Definitions of Sets

Basis: $6 \in S, 15 \in S$

Recursive: If $x,y \in S$, then $x+y \in S$

 $[1, 1, 0] \in S, [0, 1, 1] \in S$

Recursive: If $[x, y, z] \in S$, then $[\alpha x, \alpha y, \alpha z] \in S$

If $[x_1, y_1, z_1] \in S$ and $[x_2, y_2, z_2] \in S$, then

 $[x_1+x_2,\,y_1+y_2,\,z_1+z_2]\in S.$

Powers of 3:

Basis: $1 \in S$

Recursive: If $x \in S$, then $3x \in S$.