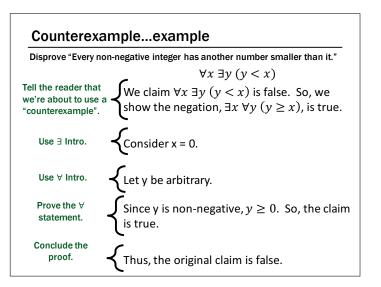
Adam Blank Spring 2016 Spring 2016 Foundations of Computing I

	$Odd(x) \equiv \exists y (x = 2y + 1)$	1) Integers		
Prove: "The square of every even number is even."				
Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$				
1 . Let <i>a</i> be arbitrat	у	Defining a		
2.1. Even	(a) Assumption			
2.2 . ∃ <i>y</i> (<i>a</i>	a = 2y) Definition of E	ven by 2.1		
2.3. $a = 2$	2 <i>c</i> ∃ Elim: 2.2			
2.4. $a^2 =$	$4c^2 = 2(2c^2)$ Algebra			
2.5 . ∃ <i>y</i> (<i>a</i>	$a^2 = 2y$) \exists Intro: 2.4			
2.6. Even	(a ²) Definition of E	ven by 2.5		
2. $\forall x (\operatorname{Even}(x) \rightarrow $	$Even(x^2)$	Direct Proof Rule		

Even and Odd	Predicate DefinitionsEven(x) = $\exists y (x = 2y)$ Integers		
$\begin{array}{c} \text{Odd}(x) \equiv \exists y \ (x = 2y + 1) \end{array} \\ \text{Initialize variables.} \\ \text{[Header/Intro of the proof]} \end{array} \\ \begin{array}{c} \text{Let a be an arbitrary even} \\ \text{number.} \end{array}$			
Explain why a^2 is even [Body of the proof]	Then, a = 2c for some c, by definition of even. Squaring both sides, we see $a^2 = 4c^2 = 2(2c^2)$.		
Conclude the sub-proo ["Return" "Inner Result			
Conclude the proof ["What have we shown	?" Since a was arbitrary, we've shown the square of every even number is even.		
Now, Prove "The square of every odd number is odd."			

	Predicate Definitions	Domain of Discourse		
Even and Odd	$Even(x) \equiv \exists y \ (x = 2y)$	Integers		
	$Odd(x) \equiv \exists y (x = 2y + 1)$			
Prove: "The square of every odd number is odd."				
Let x be an arbitrary odd number.				
Then, x = 2k+1 for some integer k (depending on x).				
Therefore, $x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.				
Since $2k^2+2k$ is an integer, x^2 is odd.				



Counterexamples

To disprove $\forall x P(x)$ prove $\neg \forall x P(x)$:

- $\neg \forall x P(x) \equiv \exists x \neg P(x)$
- To prove the existential, find an x for which P(x) is false
- This example is called a counterexample.

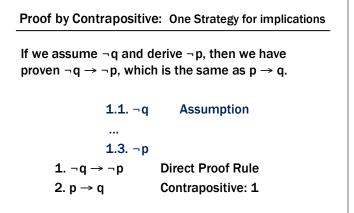
Reminder for HW

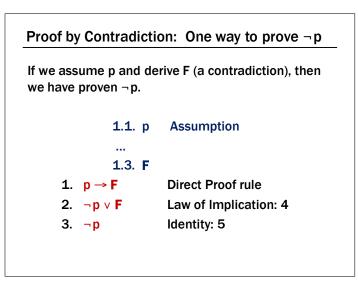
For Elim **J**...

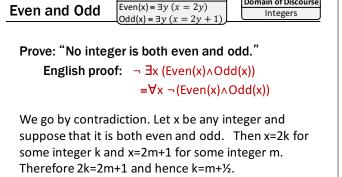
Your "c" has to be New (e. g. cannot be used previously in the proof) You should say what variables your "c" depends on.

The order you use Elim ∃ and Elim ∀ in DOES matter!

Reminder: $\exists x \forall y P(x,y)$ IS DIFFERENT FROM $\forall y \exists x P(x,y)$







Predicate Definitions

Domain of Discourse

But two integers cannot differ by ½ so this is a contradiction. So, no integer is both even and odd.

• A real number x is rational iff there exist integers p
and q with q≠0 such that x=p/q.

Rational Numbers

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

Domain of Discourse

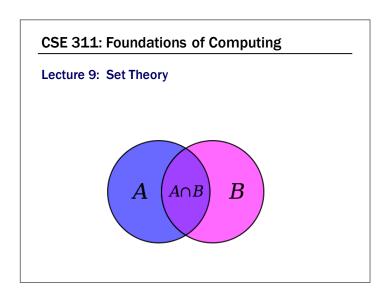
Real Numbers

Domain of Discourse Rationality Real Numbers Predicate Definitions Rational(x) = $\exists p \exists q \ ((x = \frac{p}{q} \land \text{Integer}(p) \land \text{Integer}(q) \land q \neq 0)$ Prove: "If x and y are rational then xy is rational." Let x and y be rational numbers. Then, x = a/b for some integers a, b, where $b \neq 0$, and y = c/d for some integers c,d, where $d \neq 0$. Note that xy = (ac)/(bd).

Since b and d are both non-zero, so is bd; furthermore, ac and bd are integers. It follows that xy is rational, by definition of rational.

Proofs

- Formal proofs follow simple well-defined rules and should be easy to check
 - In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - Easily checkable in principle
- Simple proof strategies already do a lot
 - Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

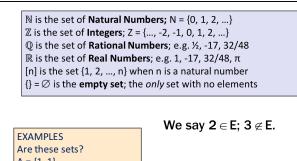


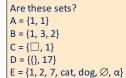
Sets

Mathematical sets are a lot like Java sets:

- Set<T> s = new HashSet<T>();

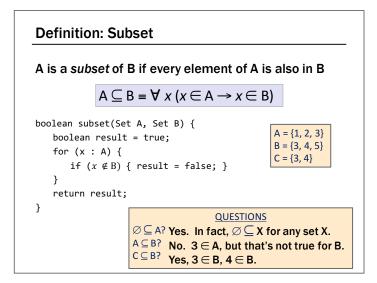
- \dots with the following exceptions:
 - They are untyped: {"string", 123, 1.2} is a valid set
 - They are immutable: you can't add/remove from them
 - They are built differently
 - They have one fundamental operation:
 - Contains: $x \in S$





Some Common Sets

They're all sets. Note $\{1\} = \{1, 1\}$.



Definition: Equality

A and B are equal if they have the same elements

$$A = B = \forall x (x \in A \Leftrightarrow x \in B)$$

```
boolean equal(Set A, Set B) {
                                                    A = \{4, 3, 3\}
   boolean result = true;
                                                    B = \{3, 4, 3\}
   for (x : A) {
                                                    C = \{3, 4\}
       if (x \notin B) { result = false; }
    }
                                                    Are any of
    for (x : B) {
                                                      A, B, C
       if (x \notin A) { result = false; }
                                                      equal?
   }
                                                     They all are!
    return result;
                                              (dups, order don't matter!)
}
```

Definitions

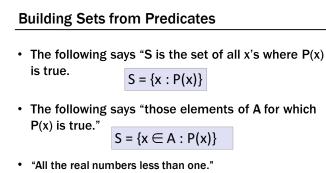
• A and B are equal if they have the same elements

$$A = B = \forall x (x \in A \Leftrightarrow x \in B)$$

· A is a subset of B if every element of A is also in B

$$A \subseteq B = \forall x (x \in A \rightarrow x \in B)$$

• Note: $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$



• $\{x \in \mathbb{R} : x < 1\}$

• "All the powers of two that happen to be odd."

• { $\mathbf{x} \in \mathbb{N}$: $\exists k (x = 2k+1) \land \exists j (x = 2^j)$ }

"All natural numbers between 1 and n" ("brackets n")
 [n] = {x ∈ N : 1 ≤ x ≤ n}

