

Foundations of Computing I

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Domain of Discourse Integers
§Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Direct Proof Rule

Domain of Discourse Integers

Now, Prove "The square of every odd number is odd."

Even and Odd \begin{tabular}{l}
Predicate Definitions

Even $(x) \equiv \exists y(x=2 y)$
Odd $(\mathrm{x}) \equiv \exists y(x=2 y+1)$

\hline

\quad

Domain of Discourse

\hline Integers

\hline
\end{tabular}

Prove: "The square of every odd number is odd." (odd $(x) \rightarrow$ Odd $\left.\left(x^{2}\right)\right)$
Let a be arbitrary. Suppose
a is odd.
\rightarrow Let a be an ashitary odd interred. Ba def. of odd, $a=2 c+1$ for Some. ind. look $a^{\prime 2}=(2 c+1)^{2}$

$$
=4 c^{2}+4 c+1
$$

50 , he have round an int $=2\left(2 c^{2}+2 c\right)+1$
a^{2} is od. 50, the (kim is time? $a^{2}=2 b l l$. so,

Predicate Definitions $\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove: "The square of every odd number is odd."

Let x be an arbitrary odd number.
Then, $x=2 k+1$ for some integer k (depending on x).
Therefore, $x^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
Since $2 k^{2}+2 k$ is an integer, x^{2} is odd.

Counterexamples

To disprove $\forall \mathrm{xP}(\mathrm{x})$ prove $\neg \forall \mathrm{xP}(\mathrm{x})$:

- $\neg \forall x P(x)=\exists x \neg P(x)$
- To prove the existential, find an x for which $P(x)$ is false
- This example is called a counterexample.

Counterexample...example

Disprove "Every non-negative integer has another number smaller than it."
Tell the reader that
we're about to use a $\left\{\begin{array}{l}\text { Ne claim } \forall x \exists y \text { (y) false. S0, we }\end{array}\right.$ "counterexample". show the negation, $\exists x \forall y(y \geq x)$, is true.

Use	in fr
nr	

k

$x=$

$$
\begin{aligned}
& \text { intro } \\
& \text { Use } \forall \text { ins. }
\end{aligned}
$$

Prove the \forall statement.

$$
\{\text { Let } y \text { be arb }
$$

$$
\left\{\begin{array}{l}
\text { mise } y, 5 x \text { nop-neg. int. } \\
s, y \geq 0=x .
\end{array}\right.
$$

Conclude the proof.

$$
\left\{\text { So, the } \text { lam ins true. }^{2}\right. \text {. }
$$

Counterexample...example

Disprove "Every non-negative integer has another number smaller than it."

$$
\forall x \exists y(y<x)
$$

Tell the reader that we're about to use a "counterexample".

We claim $\forall x \exists y(y<x)$ is false. So, we show the negation, $\exists x \forall y(y \geq x)$, is true.

$$
\text { Use } \begin{gathered}
\text { intor } \\
\text { ateltan. }
\end{gathered}
$$

$$
\{\text { Consider } x=0
$$

$$
\{\text { Let y be arbitrary. }
$$

Since y is non-negative, $y \geq 0$. So, the claim is true.

Conclude the proof.

Thus, the original claim is false.

Reminder for HW

$$
\text { For } \operatorname{elm}_{\mathrm{e}} \mathrm{\exists} . . .
$$

Your "c" has to be new (e. g. cannot be used previously in the proof) You should say what variables your "c" depends on.

The order you use Elim \exists and Elim \forall in DOES matter!

Reminder: $\exists x \forall y P(x, y)$ IS DIFFERENT FROM $\forall y \exists x P(x, y)$

Proof by Contrapositive: One Strategy for implications

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is the same as $p \rightarrow q$.

$$
\text { 1.1. } \neg \mathrm{q} \quad \text { Assumption }
$$

$$
\text { 1.3. } \neg p
$$

1. $\neg q \rightarrow \neg p \quad$ Direct Proof Rule
2. $\mathrm{p} \rightarrow \mathrm{q} \quad$ Contrapositive: 1

$$
(p \rightarrow a)=(7 q \rightarrow 7 p)
$$

Proof by Contradiction: One way to prove $\neg \mathbf{p}$

If we assume p and derive F (a contradiction), then we have proven $\neg p$.

1. $p \rightarrow F$
2. $\neg p \vee F$
3.

Assumption

Direct Proof rule
Law of Implication: 4
Identity: 5

Prove: "No integer is both even and odd."
 $i s$ even and odd.

By def. of ever, $x=2 a f_{v}$ some a.
B^{-}def. de on, $>=2 b+1$ for some b.
So, $2 a=2 b+1 . \quad a-b=\frac{1}{2} .50$,
$\frac{1}{2}$ is an integer. This is a on tradition.

Even and Odd

Predicate Definitions $\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove: "No integer is both even and odd."

$$
\begin{aligned}
\text { English proof: } & \neg \exists x(\operatorname{Even}(\mathrm{x}) \wedge \operatorname{Odd}(\mathrm{x})) \\
& \equiv \forall \mathrm{x} \neg(\operatorname{Even}(\mathrm{x}) \wedge \operatorname{Odd}(\mathrm{x}))
\end{aligned}
$$

We go by contradiction. Let x be any integer and suppose that it is both even and odd. Then $x=2 k$ for some integer k and $x=2 m+1$ for some integer m. Therefore $2 k=2 m+1$ and hence $k=m+1 / 2$.

But two integers cannot differ by $1 / 2$ so this is a contradiction. So, no integer is both even and odd.

Rational Numbers

- A real number x is rational iff there exist integers p and q with $q \neq 0$ such that $x=p / q$. Rational $(x) \equiv \exists p \exists \mathcal{((x = p / q)} \wedge \underbrace{\operatorname{Integer}(p) \wedge \operatorname{Integer}(q) \wedge q \neq 0)}$

$$
V S . M, \sqrt{2}
$$

Prove: "If x and y are rational then xy is rational."
\qquad Let x, y be arbilsam rationals.
So, $x=\frac{P_{x}}{a_{x}}$ and y 解 q_{y}, ware $p_{x}, a_{x}, p_{y}, T_{y}$ ane inks. on A
So, $x y=\frac{P_{x} P_{y}}{q_{x} T_{y}}$ by cull. fraction. $T_{x}, q_{y} t 0$.
Note $P_{x} p_{y}$ ir an int, $T_{0} t_{t}$ is anon-zes int (
Since $a_{x} \neq 0$ and $\left.a_{y} 70\right)$ \rightarrow So, $x y$ iv rational.

Rationality

Let x and y be rational numbers. Then, $x=a / b$ for some integers a, b, where $b \neq 0$, and $y=c / d$ for some integers c, d, where $d \neq 0$.
Note that $x y=(a c) /(b d)$.
Since b and d are both non-zero, so is bd; furthermore, ac and bd are integers. It follows that xy is rational, by definition of rational.

Proofs

- Formal proofs follow simple well-defined rules and should be easy to check
- In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- Easily checkable in principle
- Simple proof strategies already do a lot
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

CSE 311: Foundations of Computing

Lecture 9: Set Theory

Sets

- Mathematical sets are a lot like Java sets:
- Set<T> s = new HashSet<T>();
- ...with the following exceptions:
- They are untyped•"string", 123, 1.2 \}is a valid set
- They are immutable: you can't add/remove from them
- They are built differently
- They have one fundamental operation:
- Contains: $x \in S$

Some Common Sets

\mathbb{N} is the set of Natural Numbers, $N=\{0,1,2, \ldots\}$ \mathbb{Z} is the set of Integers; $Z=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$
\mathbb{R} is the set of Real Numbers; e.g. 1, $-17,32 / 48, \pi$
[n] i\& the set $\{1,2, \ldots, n\}$ when n is a natural number
$\}=\varnothing$ is the empty set; the only set with no elements

EXAMPLES
Are these sets?
$\vec{A}=\{1,1\}=\{1\}$
$B=\{1,3,2\}$
$C=\{\square, 1\}$
$D=\{\{ \}, 17\}$
$E=\{1,2,7$, cat, dog, $\varnothing, \alpha\}$

We sax $2 \in E ; \notin E$.
S. add (1)
S. ada

Some Common Sets

\mathbb{N} is the set of Natural Numbers; $N=\{0,1,2, \ldots\}$
\mathbb{Z} is the set of Integers; $Z=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$
\mathbb{R} is the set of Real Numbers; e.g. 1, $-17,32 / 48, \pi$
[n] is the set $\{1,2, \ldots, \mathrm{n}\}$ when n is a natural number $\}=\varnothing$ is the empty set; the only set with no elements

$$
\begin{aligned}
& \text { EXAMPLES } \\
& \text { Are these sets? } \\
& \begin{array}{l}
A=\{1,1\} \\
B=\{1,3,2\} \\
C=\{\square, 1\} \\
D=0,\lfloor 7\} \\
E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{array}
\end{aligned}
$$

We say $2 \in E ; 3 \notin E$.

> They're all sets.
> Note $\{1\}=\{1,1\}$.

Definition: Equality

A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

```
boolean equal(Set A, Set B) {
    boolean result = true;
    for (x : A) {
        if (x@) { result = false; }
    }
    for (x : B) {
        if (x &A) { result = false; }
    }
    return result;
\[
\begin{aligned}
& A=\{4,3,3\} \\
& B=\{3,4,3\} \\
& C=\{3,4\}
\end{aligned}
\]

Are any of A, B, C equal?

They all are!
(dups, order don't matter!)

\section*{Definition: Subset}

\section*{\(A\) is a subset of \(B\) if every element of \(A\) is also in \(B\)}
\[
A \subseteq B=\forall x(x \in A \rightarrow x \in B)
\]
boolean subset(Set A, Set B) \{
boglearresult = true;
fec \((x: A)\) \{
kif \((x \notin \boldsymbol{B})\) \{ result \(=\) false; \}

\}
return result;


\section*{Definition: Subset}

\section*{\(A\) is a subset of \(B\) if every element of \(A\) is also in \(B\)}
\[
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
\]
boolean subset(Set A, Set B) \{ boolean result = true;
```

for (x : A) {

```
    if \((x \notin A)\) \{ result \(=\) false; \}
\[
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\}
\end{aligned}
\]
\[
\}
\]
return result;

\section*{QUESTIONS}
\(\varnothing \subseteq\) A? Yes. In fact, \(\varnothing \subseteq X\) for any set \(X\). \(A \subseteq B\) ? No. \(3 \in A\), but that's not true for \(B\).
\(C \subseteq B\) ? Yes, \(3 \in B, 4 \in B\).

\section*{Definitions}
- \(A\) and \(B\) are equal if they have the same elements
\[
\mathrm{A}=\mathrm{B} \equiv \forall x(x \in \mathrm{~A} \stackrel{\downarrow}{\longleftrightarrow} x \in \mathrm{~B})
\]
- \(A\) is a subset of \(B\) if every element of \(A\) is also in \(B\)
\[
\mathrm{A} \subseteq \mathrm{~B} \equiv \forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
\]
\(\downarrow\) \(\overbrace{}^{1}\)
- Note: \((\boldsymbol{A}=\boldsymbol{B}) \equiv(\boldsymbol{A} \subseteq \boldsymbol{B}) \wedge(\boldsymbol{B} \subseteq \boldsymbol{A})\)

\section*{Building Sets from Predicates}
- The following says " \(S\) is the set of all \(x\) 's where \(P(x)\) is true.
\[
S=\{x: P(x)\}
\]
- The following says "those elements of \(\mathbb{A}\) for which \(\mathrm{P}(\mathrm{x})\) is true."
\[
S=\{x \in A: P(x)\}
\]
- "All the real numbers less than one.",
\[
\begin{aligned}
& \text { real numbers less than one." }: x \in \mathbb{R} \wedge x<1\} \\
& \{x \in \mathbb{R}: x<1\}=\{x: x \in\{
\end{aligned}
\]
- "All the powers of two that happen to be odd."
\[
\begin{aligned}
& \text { powers of two that happen to be odd." } \\
& \left\{n_{0} \times \mathbb{I n}(x=2 n+1) \wedge \exists k\left(x=2^{k}\right)\right\}
\end{aligned}
\]
- "All natural numbers between 1 and \(\mathrm{n}^{\prime \prime}\) ("brackets n ")

\section*{Building Sets from Predicates}
- The following says " \(S\) is the set of all \(x\) 's where \(P(x)\) is true.
\[
S=\{x: P(x)\}
\]
- The following says "those elements of \(\mathbf{S}\) for which \(P(x)\) is true."
\[
S=\{x \in A: P(x)\}
\]
- "All the real numbers less than one"
- \(\{x \in \mathbb{R}: x<1\}\)
- "All the powers of two that happen to be odd."
- \(\left\{x \in \mathbb{N}: \exists \mathrm{k}(\mathrm{x}=2 \mathrm{k}+1) \wedge \exists \mathrm{j}\left(\mathrm{x}=2^{\mathrm{j}}\right)\right\}\)
- "All naturat numbers betwleen 1 and n " ("brackets n ")
\[
[n]=\{x \in \mathbb{N} \mathbb{1}) \leq x \leq n\}
\]

\section*{Set Operations}
\(A \cup B=\{x:(x \in A) \vee(x \in B)\}\) Union
\(A \cap B=\{x:(x \in A) \wedge(x \in B)\}\) Intersection \(A \backslash B=\{x:(x \in A) \wedge(x \notin B)\}\) Set Difference


\section*{QUESTIONS}

Using A, B, C and set operations, make...
\([6]=A \cup B \cup C\)
\(\{3\}=\)
Sc 3
\(\{1,2\}=\)

\section*{Set Operations}
\(A \cup B=\{x:(x \in A) \vee(x \in B)\}\) Union
\(A \cap B=\{x:(x \in A) \wedge(x \in B)\}\) Intersection

\section*{\(A \backslash B=\{x:(x \in A) \wedge(x \notin B)\}\) Set Difference}
\[
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{4,5,6\} \\
& C=\{3,4\}
\end{aligned}
\]

\section*{QUESTIONS}

Using \(A, B, C\) and set operations, make...
\([6]=A \cup B=A \cup B \cup C\)
\(\{3\}=C \backslash B=A \backslash B=A \cap B\)
\(\{1,2\}=A \backslash C=(A \cup B) \backslash C\)```

