Spring 2016

Foundations of Computing I

Now, Prove "The square of every odd number is odd."

Predicate Definitions

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$ Domain of Discourse

Prove: "The square of every odd number is odd." $M(x) \rightarrow OM(x')$ Let a be artitrary Suppor a is odd. > Let a be an arbitrary odd integer. By def. of odd, $a = 2c \pm 1$ for some c. Look $a^2 = (2e \pm 1)^2$ =40+40+1 So, he have tokend an inf $= 2(2c^2+2c) + 1$ r^2 is odd. So, the (kin is the? = 2h A). So,

Predicate Definitions

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$ Domain of Discourse Integers

Prove: "The square of every odd number is odd."

Let x be an arbitrary odd number.

Then, x = 2k+1 for some integer k (depending on x).

Therefore, $x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

Since $2k^2+2k$ is an integer, x^2 is odd.

To disprove $\forall x P(x) \text{ prove } \neg \forall x P(x)$:

- $\bullet(\neg \forall x P(x)) \equiv \exists x \neg P(x))$
- To prove the existential, find an x for which P(x) is false
- This example is called a counterexample.

Counterexample...example

Disprove "Every non-negative integer has another number smaller than it."

Counterexample...example

Your "c" has to be new (e. g. cannot be used previously in the proof) You should say what variables your "c" depends on.

The order you use Elim ∃ and Elim ∀ in **DOES** matter!

Reminder: $\exists x \forall y P(x,y)$ IS DIFFERENT FROM $\forall y \exists x P(x,y)$

Proof by Contrapositive: One Strategy for implications

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is the same as $p \rightarrow q$.

If we assume p and derive F (a contradiction), then we have proven $\neg p$. $\bigvee correction$ 1.1. p Assumption

> $p \rightarrow F$ Direct Proof rule $\neg p \lor F$ Law of Implication: 4 $\frown p$ Identity: 5

1.

2.

Prove: "No integer is both even and odd." English proof: $\neg \exists x (Even(x) \land Odd(x))$ $\equiv \forall x \neg (Even(x) \land Odd(x))$

We go by contradiction. Let x be any integer and suppose that it is both even and odd. Then x=2k for some integer k and x=2m+1 for some integer m. Therefore 2k=2m+1 and hence k=m+½.

But two integers cannot differ by ½ so this is a contradiction. So, no integer is both even and odd.

VS. M, NZ,

 A real number x is *rational* iff there exist integers p and q with q≠0 such that x=p/q.

Rational(x) = $\exists p \exists q ((x=p/q) \land Integer(p) \land Integer(q) \land q \neq 0)$

Rationality

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = \frac{p}{q} \land \text{Integer}(p) \land \text{Integer}(q) \land q \neq 0))$

Prove: "If x and y are rational then xy is rational."

Predicate Definitions

Rational(x) = $\exists p \exists q ((x = \frac{p}{q} \land \text{Integer}(p) \land \text{Integer}(q) \land q \neq 0$

Prove: "If x and y are rational then xy is rational."

Let x and y be rational numbers. Then, x = a/b for some integers a, b, where $b \neq 0$, and y = c/d for some integers c,d, where $d \neq 0$.

Note that xy = (ac)/(bd).

Since b and d are both non-zero, so is bd; furthermore, ac and bd are integers. It follows that xy is rational, by definition of rational.

- Formal proofs follow simple well-defined rules and should be easy to check
 - In the same way that code should be easy to execute
- English proofs correspond to those rules but are designed to be easier for humans to read

- Easily checkable in principle

- Simple proof strategies already do a lot
 - Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)

CSE 311: Foundations of Computing

Lecture 9: Set Theory

- Mathematical sets are a lot like Java sets:
 - Set<T> s = new HashSet<T>();
 - ... with the following exceptions:
 - They are untyped { { "string", 123, 1.2} is a valid set
 - <u>They are immutable: you can't add/remove from</u> them
 - They are built differently
 - They have one fundamental operation:

Some Common Sets

N is the set of Natural Numbers $N = \{0, 1, 2, ...\}$ Z is the set of Integers; $Z = \{..., -2, -1, 0, 1, 2, ...\}$ Q is the set of Rational Numbers; e.g. ½, -17, 32/48 R is the set of Real Numbers; e.g. 1, -17, 32/48, π [n] is the set $\{1, 2, ..., n\}$ when n is a natural number $\{\} = \emptyset$ is the empty set; the *only* set with no elements

EXAMPLES
Are these sets?
$$A = \{1, 1\} = E^{i}$$

 $B = \{1, 3, 2\}$
 $C = \{\Box, 1\}$
 $D = \{\{\}, 17\}$
 $E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}$

We say
$$2 \in E; \ \mathcal{E} \notin E.$$

 $\int dd(\eta)$
 $\int dd(\eta)$

N is the set of Natural Numbers; N = {0, 1, 2, ...} Z is the set of Integers; Z = {..., -2, -1, 0, 1, 2, ...} Q is the set of Rational Numbers; e.g. ½, -17, 32/48 R is the set of Real Numbers; e.g. 1, -17, 32/48, π [n] is the set {1, 2, ..., n} when n is a natural number {} = Ø is the empty set; the only set with no elements

EXAMPLES
Are these sets?
A = {1, 1}
B = {1, 3, 2}
C = {□, 1}
D = (1), (17)
E = {1, 2, 7, cat, dog, Ø, α}

We say
$$2 \in E$$
; $3 \notin E$.

They're all sets. Note $\{1\} = \{1, 1\}$. A and B are equal if they have the same elements

$$A = B = \forall x (x \in A \Leftrightarrow x \in B)$$

```
boolean equal(Set A, Set B) {
   boolean result = true;
   for (x : A) {
       if (x \notin A) { result = false; }
   }
   for (x : B) {
       if (x \notin A) { result = false; }
   }
   return result;
}
```

```
A = {4, 3, 3}
B = {3, 4, 3}
C = {3, 4}
```

```
Are any of
A, B, C
equal?
```

They all are! (dups, order don't matter!) A is a subset of B if every element of A is also in B

}

A is a subset of B if every element of A is also in B

$$A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$$

```
boolean subset(Set A, Set B) {
   boolean result = true;
   for (x : A) {
      if (x ∉ A) { result = false; }
   }
   return result;
```

 $\begin{array}{l} \underbrace{\mathsf{QUESTIONS}}{ \varnothing \subseteq \mathsf{A}? \ \mathsf{Yes.} \ \mathsf{In} \ \mathsf{fact}, \ \varnothing \subseteq \mathsf{X} \ \mathsf{for} \ \mathsf{any} \ \mathsf{set} \ \mathsf{X}. \\ \mathsf{A} \subseteq \mathsf{B}? \ \mathsf{No.} \ \mathsf{3} \in \mathsf{A}, \ \mathsf{but} \ \mathsf{that's} \ \mathsf{not} \ \mathsf{true} \ \mathsf{for} \ \mathsf{B}. \\ \mathsf{C} \subseteq \mathsf{B}? \ \ \mathsf{Yes}, \ \mathsf{3} \in \mathsf{B}, \ \mathsf{4} \in \mathsf{B}. \end{array}$

• A and B are equal if they have the same elements

$$A = B = \forall x (x \in A \Leftrightarrow x \in B)$$

• A is a subset of B if every element of A is also in B

- The following says "S is the set of all x's where P(x) is true.
 S = {x : P(x)}
- The following says "those elements of f for which P(x) is true."

$$S = \{x \in A : P(x)\}$$

• "All the real numbers less than one." • $\xi \propto \epsilon R : \ll \epsilon R = \xi \propto \epsilon R \wedge \ll \epsilon R$

- "All the powers of two that happen to be odd." • $\{x \in \mathcal{N} : \exists n(x = 2n + 1) \land \exists k (x = 2^k)\}$
- "All natural numbers between 1 and n" ("brackets n")

- The following says "S is the set of all x's where P(x) is true.
 S = {x : P(x)}
- The following says "those elements of S for which P(x) is true." $S = \{x \in A : P(x)\}$
- "All the real numbers less than one"
 - { $\mathbf{x} \in \mathbb{R} : \mathbf{x} < \mathbf{1}$ }
- "All the powers of two that happen to be odd."
 - { $\mathbf{x} \in \mathbb{N}$: $\exists k (x = 2k+1) \land \exists j (x = 2^j)$ }
- "All natural numbers between 1 and n" ("brackets n") • $[n] = \{x \in \mathbb{N} \ (1) \le x \le n\}$

Α

B

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$
Union
$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$
Intersection
$$A \setminus B = \{ x : (x \in A) \land (x \notin B) \}$$
Set Difference

$$\underbrace{\begin{array}{l}2,3\\5,6\end{array}}{Using A, B, C and set operations, make...}\\[6] = \land \lor \lor \lor \lor \leftarrow \\\{3\} = \\\{1,2\} = \end{array}$$

$$A \cup B = \{ x : (x \in A) \lor (x \in B) \}$$
 Union
$$A \cap B = \{ x : (x \in A) \land (x \in B) \}$$
 Intersection

$$A \setminus B = \{ x : (x \in A) \land (x \notin B) \}$$

Set Difference

 $\underline{OUESTIONS}$ Using A, B, C and set operations, make... $[6] = A \cup B = A \cup B \cup C$ $\{3\} = C \setminus B = A \setminus B = A \cap B$ $\{1,2\} = A \setminus C = (A \cup B) \setminus C$