CSE 311: Foundations of Computing I

Proof Techniques

What Is This?

Each of the following is as close as we can get to giving you a template (and a completely worked out example) for every proof technique we will discuss this quarter.

However, there is a large WARNING associated with these templates! It might be tempting to memorize the structure(s) of these templates rather than learn what they mean well enough to duplicate them on your own. DON'T DO IT!!! These are meant as a way to help you ease into proof writing as we introduce more and more complicated strategies. There isn't (and will never be) an algorithm or formula for writing proofs.

Contents

1 Direct Proofs 2
1.1 Technique Outlines . 2
1.2 Example . 2

2 Implication Proofs 3
2.1 Technique Outlines . 3
2.2 Examples . 4

3 Contradiction Proofs 5
3.1 Technique Outlines . 5
3.2 Example . 5

4 Set Proofs 6
4.1 Technique Outlines . 6
4.2 Example . 7

5 Induction Proofs 8
5.1 Technique Outlines . 8
5.2 Example . 9

6 Strong Induction Proofs 10
6.1 Technique Outline . 10
6.2 Example . 11

7 Structural Induction Proofs 13
7.1 Technique Outline . 13
7.2 Example . 13

8 Irregularity Proofs 14
8.1 Technique Outline . 14
8.2 Example . 14

9 Diagonalization Proofs 15
9.1 Technique Outline . 15
9.2 Example . 15

1 Direct Proofs

1.1 Technique Outlines

Proving a \forall Statement

Prove $\forall x P(x)$	Prove $\forall x(x=5 \vee x \neq 5)$
Now, x represents an arbitrary element, and we can just use it. Prove $P(x)$ by some other strategy.	Let x be arbitrary. Note that by the law of excluded middle, $x=5$ or $x \neq 5$. Since x was arbitrary, the claim is true.
Since x was arbitrary, the claim is true.	

Proving an \exists Statement

Prove $\exists x P(x)$.
[Find an x for which $P(x)$ is true. This is not actually part of the proof, but it's necessary to continue.] Let $x=$ expression that satisfies $P(x)$.

Now, explain why $P(x)$ is true.

Prove $\exists x$ Even (x).

[We can choose any even number here. We'll go with 2 , because it's simplest.] Let $x=2$.

Note that 2 is even, by definition, because $2 \times$
$1=2$.
Since $P(x)$ is true, the claim is true.
Since 2 is even, the claim is true.

Disproving a Statement

Disprove $P(x)$	Disprove Odd(4).
We show that $P(x)$ is false by proving its negation: We show that 4 is not odd by showing it's even. the negation of $P(x)$. Note that 4 is even, by definition, because $2 \times$ $2=4$. Prove $\neg P(x)$ using some other proof strategy. Since $\neg P(x)$ is true, $P(x)$ is false. Since 4 is even, it is not odd.	

1.2 Example

Prove $\forall x \forall y \exists z(z x=y)$ Domain: Non-Zero Reals
Proof: Let x and y be arbitrary. Choose $z=\frac{y}{x}$. Note that $x \times \frac{y}{x}=y$. This is valid, because $x \neq 0$. Thus, we've found a $z(y x)$ such that the claim is true.

Commentary: We started off the proof with "Let x and y be arbitrary". This is so that the claim works for any x and y we are provided. We're not allowed to assume anything special about x or y, but if we use them as if they are any particular number, the claim will be true for any x and y.
The "choose" line is used to prove the existential quantifier by pointing out a value that works. We have to follow that up with a justification of why the choice we made works.
The last line just sums up what we've done.

2 Implication Proofs

2.1 Technique Outlines

Proving an \rightarrow (Directly)	
Prove $A \rightarrow B$.	Prove that if $x \leq 4$ is an even, positive integer, then it's a power of two.
Suppose A is true.	
	Suppose $x \leq 4$ is even, positive integer.
Prove B using the additional assumption that A is true.	Since x is a positive integer, $x>0$. Furthermore, since $x \leq 4$, it must be that $x=2$ or $x=4$. Note that $2=2^{1}$ and $4=2^{2}$; so, both possibilities are powers of two.
It follows that B is true. Therefore, $A \rightarrow B$.	It follows that x must be a power of two. So, if x is an even positive integer at most four, then x is a power of two.

Proving an \rightarrow (Contrapositive)	
Prove $A \rightarrow B$.	Prove that if $x^{2}-6 x+9 \neq 0$, then $x \neq 3$.
We go by contrapositive. Suppose $\neg B$ is true.	We go by contrapositive. Suppose $x=3$.
Prove $\neg A$ using the additional assumption that $\neg B$ is true.	Then, $x^{2}-6 x+9=3^{2}-6 \times 3+9=0$.
So, $\neg A$ is true. Therefore, $A \rightarrow B$.	So, $x^{2}-6 x+9=0$. Thus, if $x^{2}-6 x+9 \neq 0$, then $x \neq 3$.

2.2 Examples

Prove $\forall x \forall y((x+y=1) \rightarrow(x y=0))$
Proof: Let x and y be arbitrary non-negative integers.
We prove the implication by contrapositive. Suppose $x y \neq 0$. Then, it must be the case that neither x nor y is zero, because $0 \times a=0$ for any a. So, $x>0$ and $y>0$, which is the same as $x \geq 1$ and $y \geq 1$.

Adding inequalities together, we see that $x+y \geq 2$. It follows that $x+y>1$ which means $x+y \neq 1$ which is what we were trying to show.

So, the original claim is true.
Commentary: The hardest thing about proof by contrapositive is to understand when to use it. There are two "clear" situations to try it in:
(1) If there are a lot of negations in the statement. (See the example above in the previous section.) Contrapositive adds a bunch of negations into each part of the implication which means if there are already a lot of them, it removes them!
(2) If you try the direct proof and get stuck (or feel like you have to use proof by contradiction). A very common mistake is to use proof by contradiction when a proof by contrapositive would be much more clear!

Prove $\forall x \forall y((x<y) \rightarrow(\exists z x<z \wedge z<y))$
Domain: Rationals
Proof: Let x, y be arbitrary rational numbers such that $x<y$.
Since x, y are both rational, we have $x=\frac{p_{x}}{q_{x}}$ and $y=\frac{p_{y}}{q_{y}}$ for integers $p_{x}, q_{x}, p_{y}, q_{y}$ such that $q_{x} \neq 0$ and $q_{y} \neq 0$.
Suppose for contradiction that there are no rationals between x and y. Note that $x \neq y$; so, it cannot be the case that $p_{x}=p_{y}$ and $q_{x}=q_{y}$.
Define $z=\frac{p_{z}}{q_{z}}=\frac{\frac{p_{x}}{q_{x}}+\frac{p_{y}}{q_{y}}}{2}=\frac{\frac{p_{x} q_{y}}{\bar{x}_{x} q_{y}}+\frac{p_{y} q_{x}}{q_{x} q_{y}}}{2}=\frac{p_{x} q_{y}+p_{y} q_{x}}{2 q_{x} q_{y}}$.
First, note that $p_{x} q_{y}+p_{y} q_{x}$ is an integer (because it's a linear combination of integers). Second, note that $2 q_{x} q_{y}$ is a non-zero integer, because $q_{x}, q_{y} \neq 0$.
Furthermore, note that $\frac{p_{z}}{q_{z}}$ is the average of x and y. Since $x \neq y$, the average must be larger than x and less than y.

It follows that z is a rational number such that $x<z<y$, which is what we were trying to prove.
So, the implication is true, as is the entire statement.

3 Contradiction Proofs

3.1 Technique Outlines

Proving a Statement By Contradiction

Prove P.
Assume for the sake of contradiction that $\neg P$ is true.

Prove if a is a non-zero rational and b is irrational, then $a b$ is irrational.

Suppose a is rational (and non-zero) and b is irrational. Now, assume for the sake of contradiction that $a b$ is rational.

By definition of rational, we have $p, q \neq 0$ such that $a b=\frac{p}{q}$. Re-arranging the equation, we have $b=\frac{p^{q}}{a q}$. Note that this is valid because $a \neq 0$. Furthermore, we found numbers $p^{\prime}=p$ and $q^{\prime}=a q$ where $q^{\prime} \neq 0$ (because $a, q \neq 0$.). So, it follows that b is rational!

However, we know that b can't both be rational and irrational; so, our assumption ($a b$ is rational) must be false. So, $a b$ is irrational.

3.2 Example

Prove $\forall x \quad\left((x>0) \rightarrow\left(x+\frac{1}{x} \geq 2\right)\right)$
Proof: Let $x>0$ be arbitrary.
Suppose for contradiction that $x+\frac{1}{x}<2$.
Then, multiplying both sides by x, we have $\left(x^{2}+1<2 x\right) \rightarrow\left(x^{2}-2 x+1<0\right)$. Factoring gives us $(x-1)^{2}<0$. However, every square must be at least zero; so, this is a contradiction. It follows that $x+\frac{1}{x} \geq 2$, as claimed.

4 Set Proofs

4.1 Technique Outlines

Proving $S=T$

$$
\text { Prove } S=T \text {. }
$$

[If one of the sets has a complement in it, then make sure to define the universal set: \mathcal{U}.]
Make incremental changes to the definition of the set via a series of equalities. The idea is to use the theorems we have for logic to prove things about the sets.

$$
\text { Prove } A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \text {. }
$$

$$
\begin{aligned}
A \cap(B \cup C) & =\{x: x \in(A \cap(B \cup C))\} & & \text { [By definition of containment] } \\
& =\{x: x \in A \wedge x \in(B \cup C)\} & & \text { [By definition of } \cap \text {] } \\
& =\{x: x \in A \wedge(x \in B \vee x \in C)\} & & \text { [By definition of } \cup \text {] } \\
& =\{x:(x \in A \wedge x \in B) \vee(x \in A \wedge x \in C)\} & & \text { [By distributivity of } \wedge, \vee] \\
& =\{x:(x \in A \cap B) \vee(x \in A \cap C)\} & & \text { [By definition of } \cap] \\
& =\{x: x \in((A \cap B) \cup(A \cap C))\} & & \text { [By definition of } \cup \text {] } \\
& =(A \cap B) \cup(A \cap C) & & \text { [By definition of containment] }
\end{aligned}
$$

Proving $S \subseteq T$

$$
\text { Prove } S \subseteq T \text {. }
$$

Suppose $x \in S$.

Use some other proof strategy to show that $x \in T$. Usually, this is a series of implications that looks very much like proving $S=T$.

So, $x \in T$. Since all elements of S are also in T, it follows that $S \subseteq T$.

$$
\text { Prove } A \cap(B \cap C) \subseteq A \cup(B \cup C)
$$

Suppose $x \in A \cap(B \cap C)$.
Then, by definition of intersection, $x \in A, x \in B$, and $x \in C$. Since x is contained in all three, we also have $x \in A \vee(x \in B \vee x \in C)$. So, by definition of union, we have $x \in A \cup(B \cup C)$.

It follows that $A \cap(B \cap C) \subseteq A \cup(B \cup C)$.

Proving $S=T$

$$
\text { Prove } S=T \text {. }
$$

We prove that $S \subseteq T$ and $T \subseteq S$ to show that $S=T$.
Prove $S \subseteq T$.

Prove $T \subseteq S$.
Since $S \subseteq T$ and $T \subseteq S, S=T$.

4.2
 Example

Prove $S=T$
Let $S=\left\{x \in \mathbb{R} \mid x^{2}>x+6\right\}$ and $T=\{x \in \mathbb{R} \mid x>3 \vee x<-2\}$.
Proof: To prove that $S=T$, we first prove that $S \subseteq T$, and then we prove that $T \subseteq S$.
Let x be an arbitrary element of S. Then, it follows that $x \in \mathbb{R}$ and $x^{2}>x+6$. Using algebra, we can simplify this inequality to $x^{2}-x-6>0$. Factoring, we get $(x-3)(x+2)>0$. Since $(x-3)(x+2)$ is positive, it must either be the case that both factors are positive or both factors are negative.

Case I (Both are positive): Then, we have $x-3>0$ and $x+2>0$. Rearranging these equations, we see that $x>3$ and $x>-2$. It follows that in this case, $x \in T$, because $x>3$.

Case II (Both are negative): Then, we have $x-3<0$ and $x+2<0$. Rearranging these equations, we see that $x<3$ and $x<-2$. It follows that in this case, $x \in T$, because $x<-2$.

Since in either case if $x \in S$, then $x \in T$, we have $S \subseteq T$.
Now, we prove that $T \subseteq S$. Let $x \in T$. Then, either $x>3$ or $x<-2$. We take this in two cases:
Case I $(x>3)$: If $x>3$, then $x-3>0$ and $x+2>0$. It follows that $(x-3)(x+2)>0$, because both factors are greater than 0 . So, $x \in S$.

Case II $(x<-2)$: If $x<-2$, then $x+2<0$ and $x-3<0$. It follows that $(x-3)(x+2)>0$, because both factors are less than 0 . So, $x \in S$.

Since in either case if $x \in T$, then $x \in S$, we have $T \subseteq S$.
Since $S \subseteq T$ and $T \subseteq S$, we have $S=T$, which is what we were trying to prove.

5 Induction Proofs

5.1 Technique Outlines

Proving $\forall(n \in \mathbb{N}) P(n)$

$$
\text { Prove } \forall(n \in \mathbb{N}) P(n) .
$$

Let $P(n)$ be " definition of $\mathrm{P}(\mathrm{n})$ here-this must have a truth value!".
We prove $P(n)$ for all $n \in \mathbb{N}$ by induction on n.

Base Case:

Prove $P(0)$ is true. This is often done by plugging in 0 and evaluating sides of an (in)equality.

So, $P(0)$ is true.

Induction Hypothesis:

Suppose $P(k)$ is true for some $k \in \mathbb{N}$.

Induction Step:
We want to show $P(k+1)$ is true.
Prove $P(k+1)$ is true using $P(k)$ as an assumption. You must use the IH somewhere in this proof and cite it when you use it.

So, $P(k) \rightarrow P(k+1)$ for all $k \in \mathbb{N}$.
It follows that $P(n)$ is true for all $n \in \mathbb{N}$ by induction.

5.2 Example

Prove $\forall(n \in \mathbb{N}) \sum_{i=0}^{n} i=\frac{n(n+1)}{2}$
Let $P(n)$ be " $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$ ". We prove $P(n)$ for all $n \in \mathbb{N}$ by induction on n.

Base Case:

Note that $\sum_{i=0}^{0} i=0=\frac{0(0+1)}{2}$.
So, $P(0)$ is true.
Induction Hypothesis:
Suppose $P(k)$ is true for some $k \in \mathbb{N}$.
Induction Step:
We want to show $P(k+1)$ is true.
Note that:

$$
\begin{array}{rlrl}
\sum_{i=0}^{k+1} i & =\left(\sum_{i=0}^{k} i\right)+(k+1) & & \text { [Splitting the summation] } \\
& =\left(\frac{k(k+1)}{2}\right)+(k+1) & {[\text { By IH }]} \\
& =(k+1)\left(\frac{k}{2}+1\right) & & {[\text { Factoring }]} \\
& =(k+1)\left(\frac{k+2}{2}\right) & & {[\text { Multiplying by } 1]} \\
& =\frac{(k+1)(k+2)}{2} & & {[\text { Algebra] }}
\end{array}
$$

So, $P(k) \rightarrow P(k+1)$ for all $k \in \mathbb{N}$.
It follows that $P(n)$ is true for all $n \in \mathbb{N}$ by induction.

