CSE 311: Foundations of Computing I

Proof Techniques

What Is This?

Each of the following is as close as we can get to giving you a template (and a completely worked out example) for every proof technique we will discuss this quarter.

However, there is a large **WARNING** associated with these templates! It might be tempting to memorize the structure(s) of these templates rather than learn what they mean well enough to duplicate them on your own. **DON'T DO IT!!!** These are meant as a way to help you ease into proof writing as we introduce more and more complicated strategies. There isn't (and will never be) an algorithm or formula for writing proofs.

Contents

1	Direct Proofs	2
	1.1 Technique Outlines	2
	1.2 Example	2
2	mplication Proofs	3
	2.1 Technique Outlines	3
	2.2 Examples	4
3	Contradiction Proofs	5
	3.1 Technique Outlines	5
	3.2 Example	5
4	Set Proofs	6
	1.1 Technique Outlines	
	4.2 Example	7
5	nduction Proofs	8
	5.1 Technique Outlines	
	5.2 Example	9
6	Strong Induction Proofs	10
	5.1 Technique Outline	
	5.2 Example	11
7	Structural Induction Proofs	13
	7.1 Technique Outline	13
	7.2 Example	13
8	rregularity Proofs	14
	3.1 Technique Outline	
	3.2 Example	14
9	Diagonalization Proofs	15
	9.1 Technique Outline	15
	9.2 Example	15

1 Direct Proofs

1.1 Technique Outlines

Proving a ∀ Statement

Prove $\forall x \ P(x)$.

Prove $\forall x \ (x = 5 \lor x \neq 5)$.

Let x be arbitrary.

Let x be arbitrary.

Now, x represents an arbitrary element, and we can just use it.

Note that by the law of excluded middle, x=5 or $x \neq 5$.

Prove P(x) by some other strategy.

Since x was arbitrary, the claim is true.

Since x was arbitrary, the claim is true.

Proving an ∃ Statement

Prove $\exists x \ P(x)$.

Prove $\exists x \; \mathsf{Even}(x)$.

[Find an x for which P(x) is true. This is not actually part of the proof, but it's necessary to continue.]

[We can choose any even number here. We'll go with 2, because it's simplest.] Let $x = \boxed{2}$.

Let x =expression that satisfies P(x).

x - 2.

Now, explain why P(x) is true.

Note that 2 is even, by definition, because $2 \times 1 = 2$.

Since P(x) is true, the claim is true.

Since 2 is even, the claim is true.

Disproving a Statement

Disprove P(x).

Disprove Odd(4).

We show that P(x) is false by proving its negation: the negation of P(x).

We show that 4 is not odd by showing it's even.

Prove $\neg P(x)$ using some other proof strategy.

Note that 4 is even, by definition, because $2 \times 2 = 4$.

Since $\neg P(x)$ is true, P(x) is false.

Since 4 is even, it is not odd.

1.2 Example

Prove $\forall x \ \forall y \ \exists z \ (zx = y)$

Domain: Non-Zero Reals

Proof: Let x and y be arbitrary. Choose $z=\frac{y}{x}$. Note that $x\times\frac{y}{x}=y$. This is valid, because $x\neq 0$. Thus, we've found a z (yx) such that the claim is true.

Commentary: We started off the proof with "Let x and y be arbitrary". This is so that the claim works for any x and y we are provided. We're not allowed to assume anything special about x or y, but if we use them as if they are any particular number, the claim will be true for any x and y.

The "choose" line is used to prove the existential quantifier by pointing out a value that works. We have to follow that up with a justification of why the choice we made works.

The last line just sums up what we've done.

2 Implication Proofs

2.1 Technique Outlines

Proving an \rightarrow (Directly)

Prove $A \rightarrow B$.

Suppose A is true.

Prove that if $x \leq 4$ is an even, positive integer, then it's a power of two.

Suppose $x \leq 4$ is even, positive integer.

Prove B using the additional assumption that A is true.

Since x is a positive integer, x > 0. Furthermore, since $x \le 4$, it must be that x = 2 or x = 4. Note that $2 = 2^1$ and $4 = 2^2$; so, both possibilities are powers of two.

It follows that B is true. Therefore, $A \to B$.

It follows that x must be a power of two. So, if x is an even positive integer at most four, then x is a power of two.

Proving an \rightarrow (Contrapositive)

Prove $A \rightarrow B$.

We go by contrapositive. Suppose $\neg B$ is true.

Prove $\neg A$ using the additional assumption that $\neg B$ is true.

So, $\neg A$ is true. Therefore, $A \rightarrow B$.

Prove that if $x^2 - 6x + 9 \neq 0$, then $x \neq 3$.

We go by contrapositive. Suppose x = 3.

Then, $x^2 - 6x + 9 = 3^2 - 6 \times 3 + 9 = 0$.

So, $x^2 - 6x + 9 = 0$. Thus, if $x^2 - 6x + 9 \neq 0$, then $x \neq 3$.

2.2 Examples

Prove $\forall x \ \forall y \ ((x + y = 1) \rightarrow (xy = 0))$

Domain: Non-negative Integers

Proof: Let x and y be arbitrary non-negative integers.

We prove the implication by contrapositive. Suppose $xy \neq 0$. Then, it must be the case that neither x nor y is zero, because $0 \times a = 0$ for any a. So, x > 0 and y > 0, which is the same as $x \geq 1$ and $y \geq 1$.

Adding inequalities together, we see that $x+y \ge 2$. It follows that x+y > 1 which means $x+y \ne 1$ which is what we were trying to show.

So, the original claim is true.

Commentary: The hardest thing about proof by contrapositive is to understand when to use it. There are two "clear" situations to try it in:

- (1) If there are a lot of negations in the statement. (See the example above in the previous section.) Contrapositive adds a bunch of negations into each part of the implication which means if there are already a lot of them, it removes them!
- (2) If you try the direct proof and get stuck (or feel like you have to use proof by contradiction). A very common mistake is to use proof by contradiction when a proof by contrapositive would be much more clear!

Prove $\forall x \ \forall y \ ((x < y) \rightarrow (\exists z \ x < z \land z < y))$

Domain: Rationals

Proof: Let x, y be arbitrary rational numbers such that x < y.

Since x,y are both rational, we have $x=\frac{p_x}{q_x}$ and $y=\frac{p_y}{q_y}$ for integers p_x,q_x,p_y,q_y such that $q_x\neq 0$ and $q_y\neq 0$.

Suppose for contradiction that there are no rationals between x and y. Note that $x \neq y$; so, it cannot be the case that $p_x = p_y$ and $q_x = q_y$.

Define
$$z=rac{p_z}{q_z}=rac{rac{p_x}{q_x}+rac{p_y}{q_y}}{2}=rac{rac{p_xq_y}{q_xq_y}+rac{p_yq_x}{q_xq_y}}{2}=rac{p_xq_y+p_yq_x}{2q_xq_y}.$$

First, note that $p_xq_y+p_yq_x$ is an integer (because it's a linear combination of integers). Second, note that $2q_xq_y$ is a *non-zero* integer, because $q_x,q_y\neq 0$.

Furthermore, note that $\frac{p_z}{q_z}$ is the average of x and y. Since $x \neq y$, the average must be larger than x and less than y.

It follows that z is a rational number such that x < z < y, which is what we were trying to prove. So, the implication is true, as is the entire statement.

3 Contradiction Proofs

3.1 Technique Outlines

Proving a Statement By Contradiction

Prove P.

Assume for the sake of contradiction that $\neg P$ is true.

Prove Q and prove $\neg Q$ for some Q by some other strategy using $\neg P$ as an assumption.

However, Q and $\neg Q$ cannot both be true; so since the only assumption we made was $\neg P$, it must be the case that $\neg P$ is false. Then, P is true. Since x was arbitrary, the claim is true.

Prove if a is a non-zero rational and b is irrational, then ab is irrational.

Suppose a is rational (and non-zero) and b is irrational. Now, assume for the sake of contradiction that ab is rational.

By definition of rational, we have $p,q\neq 0$ such that $ab=\frac{p}{q}$. Re-arranging the equation, we have $b=\frac{p}{aq}$. Note that this is valid because $a\neq 0$. Furthermore, we found numbers p'=p and q'=aq where $q'\neq 0$ (because $a,q\neq 0$.). So, it follows that b is rational!

However, we know that b can't both be rational and irrational; so, our assumption (ab is rational) must be false. So, ab is irrational.

Domain: Reals

3.2 Example

Prove
$$\forall x \ \left((x > 0) \to \left(x + \frac{1}{x} \ge 2 \right) \right)$$

Proof: Let x > 0 be arbitrary.

Suppose for contradiction that $x + \frac{1}{x} < 2$.

Then, multiplying both sides by x, we have $(x^2+1<2x)\to (x^2-2x+1<0)$. Factoring gives us $(x-1)^2<0$. However, every square must be at least zero; so, this is a contradiction. It follows that $x+\frac{1}{x}\geq 2$, as claimed.

5

4 Set Proofs

4.1 Technique Outlines

Proving S = T

Prove S = T.

[If one of the sets has a complement in it, then make sure to define the universal set: \mathcal{U} .]

Make incremental changes to the definition of the set via a series of equalities. The idea is to use the theorems we have for logic to prove things about the sets.

Prove $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

$$\begin{split} A \cap (B \cup C) &= \{x : x \in (A \cap (B \cup C))\} & \text{[By definition of containment]} \\ &= \{x : x \in A \land x \in (B \cup C)\} & \text{[By definition of } \cap \text{]} \\ &= \{x : x \in A \land (x \in B \lor x \in C)\} & \text{[By definition of } \cup \text{]} \\ &= \{x : (x \in A \land x \in B) \lor (x \in A \land x \in C)\} & \text{[By definition of } \cap \text{]} \\ &= \{x : (x \in A \cap B) \lor (x \in A \cap C)\} & \text{[By definition of } \cap \text{]} \\ &= \{x : x \in ((A \cap B) \cup (A \cap C))\} & \text{[By definition of containment]} \end{split}$$

Proving $S \subseteq T$

Prove $S \subseteq T$.

Suppose $x \in S$.

Use some other proof strategy to show that $x \in T$. Usually, this is a series of implications that looks very much like proving S = T.

So, $x \in T$. Since all elements of S are also in T, it follows that $S \subseteq T$.

Prove $A \cap (B \cap C) \subseteq A \cup (B \cup C)$.

Suppose $x \in A \cap (B \cap C)$.

Then, by definition of intersection, $x \in A$, $x \in B$, and $x \in C$. Since x is contained in all three, we also have $x \in A \vee (x \in B \vee x \in C)$. So, by definition of union, we have $x \in A \cup (B \cup C)$.

It follows that $A \cap (B \cap C) \subseteq A \cup (B \cup C)$.

Proving S = T

Prove S = T.

We prove that $S \subseteq T$ and $T \subseteq S$ to show that S = T.

Prove $S \subseteq T$.

Prove $T \subseteq S$.

Since $S \subseteq T$ and $T \subseteq S$, S = T.

4.2 Example

Prove S = T

Let $S = \{x \in \mathbb{R} \mid x^2 > x + 6\}$ and $T = \{x \in \mathbb{R} \mid x > 3 \lor x < -2\}.$

Proof: To prove that S = T, we first prove that $S \subseteq T$, and then we prove that $T \subseteq S$.

Let x be an arbitrary element of S. Then, it follows that $x \in \mathbb{R}$ and $x^2 > x + 6$. Using algebra, we can simplify this inequality to $x^2 - x - 6 > 0$. Factoring, we get (x - 3)(x + 2) > 0. Since (x - 3)(x + 2) is positive, it must either be the case that both factors are positive or both factors are negative.

Case I (Both are positive): Then, we have x-3>0 and x+2>0. Rearranging these equations, we see that x>3 and x>-2. It follows that in this case, $x\in T$, because x>3.

Case II (Both are negative): Then, we have x-3 < 0 and x+2 < 0. Rearranging these equations, we see that x < 3 and x < -2. It follows that in this case, $x \in T$, because x < -2.

Since in either case if $x \in S$, then $x \in T$, we have $S \subseteq T$.

Now, we prove that $T \subseteq S$. Let $x \in T$. Then, either x > 3 or x < -2. We take this in two cases:

Case I (x > 3): If x > 3, then x - 3 > 0 and x + 2 > 0. It follows that (x - 3)(x + 2) > 0, because both factors are greater than 0. So, $x \in S$.

Case II (x < -2): If x < -2, then x + 2 < 0 and x - 3 < 0. It follows that (x - 3)(x + 2) > 0, because both factors are less than 0. So, $x \in S$.

Since in either case if $x \in T$, then $x \in S$, we have $T \subseteq S$.

Since $S \subseteq T$ and $T \subseteq S$, we have S = T, which is what we were trying to prove.

5 Induction Proofs

5.1 Technique Outlines

Proving $\forall (n \in \mathbb{N}) \ P(n)$

Prove $\forall (n \in \mathbb{N}) \ P(n)$.

Let P(n) be " definition of P(n) here—this must have a truth value! ".

We prove P(n) for all $n \in \mathbb{N}$ by induction on n.

Base Case:

Prove P(0) is true. This is often done by plugging in 0 and evaluating sides of an (in)equality.

So, P(0) is true.

Induction Hypothesis:

Suppose P(k) is true for some $k \in \mathbb{N}$.

Induction Step:

We want to show P(k+1) is true.

Prove P(k+1) is true using P(k) as an assumption. You must use the IH somewhere in this proof and cite it when you use it.

So, $P(k) \to P(k+1)$ for all $k \in \mathbb{N}$.

It follows that P(n) is true for all $n \in \mathbb{N}$ by induction.

5.2 Example

Prove
$$\forall (n \in \mathbb{N}) \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

Let
$$P(n)$$
 be " $\sum_{i=0}^n i = \frac{n(n+1)}{2}$ ". We prove $P(n)$ for all $n \in \mathbb{N}$ by induction on n .

Base Case:

Note that
$$\sum_{i=0}^0 i=0=\frac{0(0+1)}{2}.$$

So, P(0) is true.

Induction Hypothesis:

Suppose P(k) is true for some $k \in \mathbb{N}$.

Induction Step:

We want to show P(k+1) is true.

Note that:

$$\begin{split} \sum_{i=0}^{k+1} i &= \left(\sum_{i=0}^{k} i\right) + (k+1) & \text{[Splitting the summation]} \\ &= \left(\frac{k(k+1)}{2}\right) + (k+1) & \text{[By IH]} \\ &= (k+1)\left(\frac{k}{2}+1\right) & \text{[Factoring]} \\ &= (k+1)\left(\frac{k+2}{2}\right) & \text{[Multiplying by 1]} \\ &= \frac{(k+1)(k+2)}{2} & \text{[Algebra]} \end{split}$$

So, $P(k) \to P(k+1)$ for all $k \in \mathbb{N}$.

It follows that P(n) is true for all $n \in \mathbb{N}$ by induction.