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All Binary Strings with no 1’s before O’s

A=¢c|0+A|A+1
len : A - Int #0: A - Int nol:A—> A
len(s) =0 #0(<) =0 nol () =
len(0 +a) =1 +len(a) #0(0 + a) =1 + #0(a) nol(0 +a) =0+ nol(a)
len(a+ 1) =1 +len(a) #0(a + 1) = #0(a) nol(a+ 1) =nol(a)

Claim: Prove that for all x € A, len(no1(x)) = #0(x)

We go by structural induction on A. Let A € A be arbitrary.
Suppose len(no1l(x)) = #0(x) is true for some x € A.
Case A=x+ 1.

len(nol(x + 1)) = len(no1l(x)) Def of nol]
= #0(x) By IH]
= #0(x + 1) Def of #0]




Structural Induction

How to prove V(x € S) P(x) is true:

— Base Case: Show that P(u) is true for all specific
elements of ue S mentioned in the Basis step

— Inductive Hypothesis: Assume that P is true for
some arbitrary values of each of the existing named
elements mentioned in the Recursive step

— Inductive Step: Prove that P(w) holds for each of the
new elements constructed in the Recursive step using

the named elements mentioned in the Inductive
Hypothesis

— Conclude that V(x € S) P(x)



Recursively Defined Programs (on Lists)

List=[]|a:L
We'll assume a is an integer.

Write a function
len : List - Int
that computes the length of a list.

Finish the function
append : (List, Int) - List
append([],i) =...
append(a :: L, i) =...
which returns a list with | appended to the end



Recursively Defined Programs (on Lists)

List=[]|a:L

We'll assume a is an integer.
len : List - Int

len([]) =0
len(a :: L) =1 + len(L)

append : (List, Int) - List
append([1,i)  =i::[I
append(a :: L, i) = a :: append(L, i)

Claim: For all lists L, and integersii,
len(append(L, i)) = 1 + len(L).



Recursively Defined Programs (on Lists)

List=[]|a:L

len : List > Int append : (List, Int) - List
len([]) =0 append([], i) =i::]]
len(a:: L) =1 +len(L) append(a :: L, i) =a :: append(L, i)

Claim: For all lists L, and integers i,
then len(append(L, i%) =1 + len(L).
Let i be an integer, and let L be a list. We go by
structural induction on L.
Case L =|]:
len(append([1, i)) = len(i::[]) [Def of append]
=1 + len([]) [Def of len]



Recursively Defined Programs (on Lists)

len : List > Int append : (List, Int) - List
len([]) =0 append([], i) =i::]]
len(a:: L) =1 +len(L) append(a :: L, i) =a :: append(L, i)

Claim: For all lists L, and integers i,
then len(append(L, i)) = 1 + if len(L).

Leti be an integer, and let L be a list. We go by structural induction on L.
Suppose “len(append(L’, i)) = len(L') + 1” is true for some list L'.
CaseL=x :: L
len(append(x::L’°, i)) = len(x::append(L’, i)) Def of append]
= 1 + len(append(L’, i)) [Def of len]
=1+ (1 +len(L’)) By IH]
=1 + len(x::L’) Def of len]




The Whole Proof!

Leti be an integer, and let L be a list. We go by structural
induction on L.

CaselL =[1I:
len(append([], i)) = len(i::[]) [Def of append]
=1 + len([]) [Def of len]
Suppose “len(append(L’, i)) = len(L') + 1” is true for some list L'.
CaseL=x :: L"
len(append(x::L’°, i)) = len(x::append(L’, i)) Def of append]
= 1 + len(append(L’, i))  [Def of len]
=1+ (1 +len(L’)) By IH]
=1 + len(x::L’) Def of len]
Since the claim is true for all cases of the definition of List, it’s
true for all lists.
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Languages: Sets of Strings

* Sets of strings that satisfy special properties
are called languages. Examples:
— English sentences
— Syntactically correct Java/C/C++ programs
— 2* = All strings over alphabet X
— Palindromes over >
— Binary strings that don’t have a O aftera 1
— Legal variable names. keywords in Java/C/C++
— Binary strings with an equal # of O's and 1's



Regular Expressions

Regular expressions over X
 Basis:

@, € are regular expressions

a is a regular expression forany a € X

* Recursive step:
— If A and B are regular expressions then so are:
(A U B)
(AB)
A*

REGEX = & | ¢ | a | REGEX U REGEX | REGEX REGEX | REGEX *



Each Regular Expression is a “pattern”

€ matches the empty string
a matches the one character string a

(A U B) matches all strings that either A matches
or B matches (or both)

(AB) matches all strings that have a first part that
A matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after

another



Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any nhumber of O’s followed by any number of 1’s



Examples

(0U 1)0(0 U 1)0

{0000, 0010, 1000, 1010}

(0*1*)*

All binary strings



Examples

(0U 1)*0110(0 U 1)*

Strings that contain “0110”

(00 U 11)*(01010 U 10001)(0 U 1)*

Strings that begin with pairs of characters
followed by “01010” or “10001”



Regular Expressions in Practice

« Used to define the “tokens’: e.g., legal variable names,
keywordsin programming languages and compilers

* Usedin grep, a program that does pattern matching
searches in UNIX/LINUX

e Pattern matching using regular expressionsis an essential
feature of PHP

* We can use regular expressions in programs to process
strings!



Regular Expressions in Java

* Pattern p = Pattern.compile("a*b");
* Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral “startofstring $ endofstring

[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(alb) aorb (A U B)
a? zero or one of a (AU g)
a* zero or more of a A*

a+ one or more of a AA*

* eg “~[\-+]1?[0-9]1*(\.[|\,)?[0-9]+S
General form of decimal number e.g. 9.12 or-9,8 (Europe)



