## ÇFF

## Foundations of

 Computing I* All slides are a combined effort between previous instructors of the course


## All Binary Strings folth no 1's pefore O's

| len : $\mathrm{A} \rightarrow$ Int |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| $\underline{\operatorname{len}(0+a)}=1+\operatorname{len}(\mathrm{a})$ |  |  |  |
| $\operatorname{len}(a+1)=1+\operatorname{len}(a)$ |  |  |  |

We go by structural induction on A . $L$ \& $A \in A$ pe arbitrary.
Suppose len $(n o 1(x))=\# 0(x)$ is true for some $x \in A$.
Case $A=x+1$ :

$$
\begin{aligned}
\operatorname{len}(\operatorname{nol}(x+1)) & =\operatorname{len}(\operatorname{nol}(x)) \\
& \neq \# 0(x) \\
& =\# 0(x+1)
\end{aligned}
$$

[Def of no1]
[By IH]
[Def of \#0]

## Structural Induction

How to prove $\forall(x \in S) P(x)$ is true:

- Base Case: Show that $\mathrm{P}(\mathrm{u})$ is true for all specific elements of $u \in S$ mentioned in the Basis step - Inductive Hypothesis: Assume that $P$ is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step
- Inductive Step: Prove that $\mathrm{P}(\mathrm{w})$ holds for each of the new elements constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis
- Conclude that $\forall(x \in S) P(x)$


## Recursively Defined Programs (on Lists)

## $\operatorname{len}([J)=0$

$\operatorname{Ler}(x:: L)=1+\operatorname{lar}(1)^{\text {List }}=[$ ] $]$ a : : L L

Write a function

$$
[1,2,3] \quad 1 \because(2 \therefore \vdots(3:[7])
$$

len : List $\rightarrow$ Int
that computes the length of a list.
Finish the function

$$
\text { append }(1::[7,2)=1: 2:: 1:[]
$$

append : (List, Int) $\rightarrow$ List
$\operatorname{append}([1, i) \quad=\infty \quad i:: c] \ll[i]$
$\operatorname{append}(a:: i)=0, a:: \operatorname{appad}(l, i)$
which returns a list with $i$ appended to the end

## Recursively Defined Programs (on Lists)

List = [ ] | a :: L

We'll assume a is an integer.
len : List $\rightarrow$ Int
$\operatorname{len}([I)=0$
$\operatorname{len}(\mathrm{a}:: \mathrm{L})=1+\operatorname{len}(\mathrm{L})$
append : (List, Int) $\rightarrow$ List
append([I, i) $\quad=\mathrm{i}::$ [I
$\operatorname{append}(\mathrm{a}:: \mathrm{L}, \mathrm{i})=\mathrm{a}:: \operatorname{append}(\mathrm{L}, \mathrm{i})$
Claim: For all lists $L$, and integers $i$, $\operatorname{len}(\operatorname{append}(L, i))=1+\operatorname{len}(L)$.

## Recursively Defined Programs (on Lists)

List = [ ] | a :: L
len : List $\rightarrow$ Int
$\operatorname{len}([I)=0$
$\operatorname{len}(\mathrm{a}:: \underline{\mathrm{L}})=1+\operatorname{len}(\mathrm{L})$


Claim: For all lists $\mathbf{L}$, and integers $\mathbf{i}$, then len( append $(\mathrm{L}, \mathrm{i}))=1+\operatorname{len}(\mathrm{L})$.
Let $L$ be an arch. list and, be an arb. ind. We go by stenctoralinduction on $L$.
Case L'二 [7:
by de op apo.
13 Les of be

## Recursively Defined Programs (on Lists)

$$
\begin{aligned}
& \text { List }=[] a:: L \\
& \text { append: (List, Int) } \rightarrow \text { List } \\
& \text { append([I, i) } \quad \text { i: : [l } \\
& \operatorname{append}(a:: L, i)=a:: \operatorname{append}(L, i)
\end{aligned}
$$

len : List $\rightarrow$ Int
$\operatorname{len}(\mathrm{LI})=0$
$\operatorname{len}(\mathrm{a}:: \mathrm{L})=1+\operatorname{len}(\mathrm{L})$
Claim: For all lists $\mathbf{L}$, and integers $\mathbf{i}$, then len(append(L, i)) = $1+\operatorname{len}(L)$.

Let i be an integer, and let $L$ be a list. We go by structural induction on $L$.
Case L = []:

$$
\begin{aligned}
\operatorname{len}(\operatorname{append}([], \mathrm{i})) & =\operatorname{len}(\mathrm{i}::[\mathrm{I}) & & {[\text { Def of append }] } \\
& =1+\operatorname{len}([]) & & {[\text { Def of len }] }
\end{aligned}
$$

Recursively Defined Programs (on Lists)


Claim: For all lists $\mathbf{L}$, and integers $\mathbf{i}$, then len( append $(\mathrm{L}, \mathrm{i}))=1+\operatorname{len}(\mathrm{L})$.
Let i be an integer, and let L be a list. We go by structural induction on L .
Suppose "len(append $\left(L^{\prime}, \mathrm{i}\right)=\operatorname{len}\left(L^{\prime}\right)+1$ " is true for some list $L^{\prime} . \longleftarrow$

$$
\begin{aligned}
& \text { Case } L=x:(x) \\
& \operatorname{Len}\left(\operatorname{arpend}\left(x:: L^{\prime}, i\right)\right)=\operatorname{lon}(x:: \operatorname{armal}(i, i)) \\
& =1+\ln \left(\operatorname{apprend}\left(L^{\prime}, j\right)\right)^{\langle 11 t} \\
& \hat{\imath}=1+\left(\left(1+\operatorname{len}\left(L^{x}\right)\right) \sin k .\right. \\
& =1+\ln \left(x: \because L^{\prime}\right)
\end{aligned}
$$

## Recursively Defined Programs (on Lists)

```
len : List }->\mathrm{ Int
len([J) = 0
len(a ::L) = 1 + len(L)
```

```
append : (List, Int) }->\mathrm{ List
```

append : (List, Int) }->\mathrm{ List
append([], i) = i::[]
append([], i) = i::[]
append(a :: L, i) = a :: append(L, i)

```
append(a :: L, i) = a :: append(L, i)
```

Claim: For all lists $\mathbf{L}$, and integers $\mathbf{i}$, then len(append(L, i)) = $1+$ if len(L).

Let i be an integer, and let L be a list. We go by structural induction on L . Suppose "len(append $\left.\left(L^{\prime}, \mathrm{i}\right)\right)=\operatorname{len}\left(L^{\prime}\right)+1$ " is true for some list $L^{\prime}$. Case $\mathrm{L}=x:: L^{\prime}$ :

## Recursively Defined Programs (on Lists)

```
len : List }->\mathrm{ Int
len([I) = 0
len(a:: L) = 1 + len(L)
```

Claim: For all lists $\mathbf{L}$, and integers $\mathbf{i}$, then len(append $(\mathrm{L}, \mathrm{i}))=1+$ if len(L).

Let $i$ be an integer, and let $L$ be a list. We go by structural induction on $L$. Suppose "len(append $\left.\left(L^{\prime}, \mathrm{i}\right)\right)=\operatorname{len}\left(L^{\prime}\right)+1$ " is true for some list $L^{\prime}$. Case $\mathrm{L}=x:: L^{\prime}$ :

$$
\begin{aligned}
\operatorname{len}\left(\operatorname{append}\left(x:: L^{\prime}, i\right)\right) & =\operatorname{len}\left(x:: a p p e n d\left(L^{\prime}, i\right)\right) & & \text { [Def of append] } \\
\longrightarrow & =1+\operatorname{len}\left(\operatorname{append}\left(L^{\prime}, i\right)\right) & & \text { [Def of len] } \\
& =1+\left(1+\operatorname{len}\left(L^{\prime}\right)\right) & & {[\text { By IH }] } \\
& =1+\operatorname{len}\left(x:: L^{\prime}\right) & & {[\text { Def of len }] }
\end{aligned}
$$

## The Whole Proof!

Let i be an integer, and let L be a list. We go by structural induction on L .
Case L = []:

$$
\begin{aligned}
\operatorname{len}(\operatorname{append}(\mathrm{II}, \mathrm{i})) & =\operatorname{len}(\mathrm{i}:: \mathrm{EI}) \\
& =1+\operatorname{len}(\mathrm{II})
\end{aligned}
$$

[Def of append]
[Def of len]
Suppose "len(append $\left.\left(L^{\prime}, \mathrm{i}\right)\right)=\operatorname{len}\left(L^{\prime}\right)+1$ " is true for some list $L^{\prime}$. Case $\mathrm{L}=x:: L^{\prime}$ :
$\operatorname{len}\left(\operatorname{append}\left(x:: L^{\prime}, i\right)\right)=\operatorname{len}\left(x:: \operatorname{append}\left(L^{\prime}, i\right)\right) \quad$ [Def of append]
$=1+\operatorname{len}\left(\operatorname{append}\left(L^{\prime}, i\right)\right) \quad[D e f ~ o f ~ l e n] ~$
$=1+\left(1+\operatorname{len}\left(L^{\prime}\right)\right) \quad$ [By IH]
$=1+\operatorname{len}\left(x:: L^{\prime}\right) \quad$ [Def of len]
Since the claim is true for all cases of the definition of List, it's true for all lists.

## CSE 311: Foundations of Computing

## Lecture 18: Regular expressions



Languages: Sets of Strings $\Sigma=\{0,1\}$

$$
\Sigma=\{\alpha, h, \ldots, z\}
$$

- Sets of strings frat satistyspecial properties are called languages. Examples $x \subseteq \sum^{x}$ - English sentences
-Syntactically correct Java/C/C++ programs
$-\Sigma^{*}=$ All strings over alphabet $\Sigma\{0,20,000 \ldots$
- Palindromes over $\Sigma$
- Binary strings that don't have a 0 after a 1
- Legal variable names. keywords in Java/C/C++
- Binary strings with an equal \# of 0's and 1's


## Regular Expressions

$\partial$
$\Sigma$
Regular expressions over $\Sigma$

- Basis:

10. $\varepsilon$ are regular expressions

(ais a regular expression for any $a \in \Sigma$

- Recursive step:
- If $A$ and $B$ are regular expressions then so are:
$\begin{array}{ll}\left(\begin{array}{l}(A \cup B) \\ (A B)\end{array}\right. & \varnothing=\{ \} \\ A^{*} & \varepsilon \\ & =\{" \cdots\end{array}$


## Each Regular Expression@is a "pattern"

$\varepsilon$ matches the empty string
$a$ matches the one character string $a$
$(A \cup B)$ matches all strings that either $A$ matches or B matches (or both)
(AB) matches all strings that have a first part that A matches followed by a second part that B matches

A* matches all strings that have any number of strings (even 0) that A matches, one after another

| Examples |
| :--- |
| Parrim $001^{*}$ |
| $(00)\left(1^{*}\right)$ |

$$
\begin{aligned}
& *=0 * 1^{*} \\
& \{\varepsilon, 0,1, \ldots\}\} \\
& \{00 ; 001,0011, \ldots
\end{aligned}
$$

## Examples

001*
$\{00,001,0011,00111, \ldots\}$

0*1*

Any number of 0's followed by any number of 1's

Examples

$$
\begin{aligned}
& (0 \cup 1) 0(0 \cup 1) 0
\end{aligned}
$$

## Examples

$(0 \cup 1) 0(0 \cup 1) 0$
$\{0000,0010,1000,1010\}$
$(0 * 1 *) *$

All binary strings

## Examples


$(00 \cup 11) *(01010 \cup 10001)(0 \cup 1) *$

## Examples

$(0 \cup 1) * 0110(0 \cup 1) *$

Strings that contain "0110"
$(00 \cup 11) *(01010 \cup 10001)(0 \cup 1) *$
Strings that begin with pairs of characters followed by "01010" or "10001"

## Regular Expressions in Practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!


## Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaab");
- boolean b = m.matches();
[01] a 0 or a 1 ^ start of string $\$$ end of string
[0-9] any single digit \. period <br>, comma \-minus
- any single character
ab a followed by b
(AB)
(a|b) a orb
$(A \cup B)$
a? zero or one of a $\quad(\mathbf{A} \cup \boldsymbol{\varepsilon})$
a* zero or more of a A*
a+ one or more of a AA*
- e.g. ^[\-+]?[0-9]*(\. $\backslash$, ) ? [0-9] +\$

General form of decimal number e.g. 9.12 or -9,8 (Europe)

