
Foundations of
Computing I

CSE311

Adam Blank Spring 2016

* All slides are a combined effort between
previous instructors of the course

Construct an NFA for binary strings with a 1 three positions from the end

q0 q1 q2 q3

0, 1

1 0, 1 0, 1

Epsilon Transitions

q0 q1 q2 q3

0, 1

1 0, 1 0, 1

q0 q1 q2 q3

0

"

1

"

0

"

q0

q1

q2 q3

"

"

a

a

b

An “epsilon transition” is a transition in an NFA that doesn’t
eat any of the string. In other words, we may take it for free.

This NFA accepts the language 0*1*0*.

Construct an NFA for binary strings with an even # of 1’s or the substring 11

q0 q1 q2 q3

0, 1

1 0, 1 0, 1

q0 q1 q2 q3

0

"

1

"

0

"

s

a0 a1

b0 b1 b2

"

"

1

0

1

0

0, 1

1 1

0, 1

The top machine accepts strings with an even number of 1’s
The bottom machine accepts strings with the substring 11.

Since we have epsilon transitions to each, it’s the union machine!

CSE 311: Foundations of Computing

Lecture 23: NFAs, Regular expressions, and NFA→DFA

Three ways of thinking about NFAs

• Outside observer: Is there a path labeled by x from
the start state to some final state?

• Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

• Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel

Theorem: For any set of strings (language) "
described by a regular expression, there is an
NFA that recognizes ".

Proof idea: Structural induction based on the
recursive definition of regular expressions...

NFAs and regular expressions Regular Expressions over Σ

• Basis:
– ∅, ɛ are regular expressions
– a is a regular expression for any a ∈ Σ

• Recursive step:
– If A and B are regular expressions then so are:

(A ∪ B)
(AB)
A*

Base Case

• Case ∅:

• Case ɛ:

• Case a:
a

Inductive Hypothesis

• Suppose that for some regular expressions
A and B there exist NFAs NA and NB such
that NA recognizes the language given by A
and NB recognizes the language given by B

NA NB

Inductive Step

Case (A ∪ B):

ɛ

ɛ

NA

NB

Inductive Step

Case (AB):

ɛ

ɛ
NA NB

Inductive Step

Case A*

ɛ

ɛ

ɛ
NA

Solution

(01 ∪1)*0

0
ɛ

ɛ

ɛ

ɛ

0

1

1

ɛ
ɛ

ɛ
ɛ

ɛ

NFAs and DFAs

Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that
recognizes exactly the same language

Conversion of NFAs to a DFAs

• Proof Idea:
– The DFA keeps track of ALL the states that the

part of the input string read so far can reach in
the NFA

– There will be one state in the DFA for each
subset of states of the NFA that can be reached
by some string

Conversion of NFAs to a DFAs

New start state for DFA
– The set of all states reachable from the start

state of the NFA using only edges labeled ɛ

a,b,e,f

f

e

ba
ɛ

ɛ

ɛ

NFA DFA

Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of
states of the NFA and each symbol s
– Add an edge labeled s to state corresponding to T, the

set of states of the NFA reached by
starting.from.some.state.in.S,.then
following.one.edge.labeled.by.s,.and
then.following.some.number.of.edges.labeled.by.ɛ

– T will be ∅ if no edges from S labeled s exist

f

e

b

ɛ

ɛ c

d

g
ɛ

1

1

1

1

b,e,f c,d,e,g1

Conversion of NFAs to a DFAs

Final states for the DFA
– All states whose set contain some final state of

the NFA

a,b,c,e
ce

ba

NFA DFA

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

DFA

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c-

1

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c-

1

b-

b,c

1

0

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c-

1

b-

b,c

1

0

∅

10

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c-

1

b-

b,c

1

0

∅

1

0,1

0

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c-

1

b-

b,c

1

0

a,b,c

∅

1

0,1

0

0

1

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c-

1

b-

b,c

1

0

a,b,c

∅

1

0,1

0

0

1

1
0

Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every
subset of states of the NFA
– Power set of the set of states of the NFA
– n-state NFA yields DFA with at most 2n states
– We saw an example where roughly 2n is necessary

Is.the.nth char.from.the.end.a.1?

• The famous “P=NP?” question asks whether a
similar blow-up is always necessary to get rid
of nondeterminism for polynomial-time
algorithms

