Adam Blank
 CSF

Foundations of Computing I

One General Proof Strategy

1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
3. Write the proof beginning with what you figured out for 2 followed by 1.

Aside: Why do we need proofs?

- $(0.5)+(0.2)(0.3)=(0.5+0.2)(0.5+0.3)$

$$
\begin{aligned}
& =(0.7)(0.8) \\
& =0.56
\end{aligned}
$$

- Solve for x in the inequality: $|x|+|x-1|<2$. Combining the terms of the left side, we find that the inequality is equivalent to $|2 x-1|<2$. So, $1 / 2<x<3 / 2$.

Example

Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$
$\left\{\begin{array}{lll}(1.1) & (p \rightarrow q) \wedge(q \rightarrow r) & \text { Assumption } \\ \text { (1.2) } p \rightarrow q & & \wedge \text { Elim: 1.1 } \\ \text { (1.3) } q \rightarrow r & \wedge \text { Elim: 1.1 }\end{array}\right.$

Assumption
MP: 1.2, 1.4.1
MP: 1.3, 1.4.2
Direct Proof Rule
(1) $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$ Direct Proof Rule

CSE 311: Foundations of Computing

Lecture 8: More Proofs

Inference rules for quantifiers

\forall Elimination
$\forall \mathrm{x} \mathrm{P}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{a})$ for any a

[^0]
Definitions: The Base of All Proofs Integers

- Before proving anything about a topic, we need to provide definitions.
- A significant part of writing proofs is unrolling and re-rolling definitions.

$$
\begin{aligned}
& \text { Predicate Definitions } \\
& \begin{array}{l}
\text { Even }(x) \equiv \exists y(x=2 y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 y+1) \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

- Prove the statement $\exists a(\operatorname{Even}(a))$

1. $2=2 * 1 \quad$ Definition of Multiplication
2. Even(2) \exists Intro: 1
3. $\exists x \operatorname{Even}(x) \quad \exists$ Intro: 2

Definitions: The Base of All Proofs
Predicate Definitions

$$
\operatorname{Even}(x) \equiv \exists y(x=2 y)
$$

$$
\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)
$$

Prove the statement $\exists a(\operatorname{Even}(a))$

1. $2=2 * 1 \quad$ Definition of Multiplication
2. Even(2) \exists Intro: 1
3. $\exists x \operatorname{Even}(x) \quad \exists$ Intro: 2

Okay, you might say, but now we have "definition of multiplication"! Isn't that cheating?
Well, sort of, but we're going to trust that basic arithmetic operations work the way we'd expect. There's a fine line, and you can always ask if you're allowed to assume something (though the answer will usually be no...).

Definitions: The Base of All Proofs

Domain of Discourse Integers $>=1$

Predicate Definitions

Even $(\mathrm{x}) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$
Primeish $(\mathrm{x}) \equiv \forall a \forall b(((a<b \wedge a b=x) \rightarrow(a=1 \wedge b=x)))$
Prove the statement $\exists a$ (Primeish $(a))$
Proof Strategy:

- 2 is going to work.
- Try to prove all the individual facts we need.
- We do this from the inside out..

1.	Let a be arbitrary	Defining a
2.	Let b be arbitrary	Defining \mathbf{b}
3.	$a \leq 2 \vee a>2$	Excluded Middle
4.	$\mathrm{b} \leq 2 \vee b>2$	Excluded Middle

Definitions: The Base of All Proofs
Domain of Discourse Integers >= 1

Predicate Definitions
Primeish $(x) \equiv \forall a \forall b(((a<b \wedge a b=x) \rightarrow(a=1 \wedge b=x)))$
Prove the statement $\exists a$ (Primeish $(a))$

Proofs using Quantifiers

"There exists an even primeish number"
First, we translate into predicate logic:
$\exists x \operatorname{Even}(x) \wedge \operatorname{Primeish}(x)$
We've already proven Even(2)and Primeish(2); so, we can use them as givens...

	Even(2)	Prev. Slide
	Primeish(2)	Prev. Slide
	Even(2) \wedge Primeish(2)	\wedge Intro: 1, 2
	$\exists x(\operatorname{Even}(x) \wedge \operatorname{Primeish}(x))$	\exists Intro: 3

Note that $2=2 * 1$ by definition of multiplication. It follows that there is a y such that $2=2 \mathrm{y}$; so, two is even.

Consider two arbitrary non-negative integers a, b.
Suppose $\mathrm{a}<\mathrm{b}$ and $\mathrm{ab}=2$. Note that when $\mathrm{b}>2$, the product is always greater than 2 . Furthermore, $a<b$. So, the only solution to the equation is $\mathrm{a}=1$ and $\mathrm{b}=2$. So, $\mathrm{a}=1$ and $\mathrm{b}=2$.

Since a and b were arbitrary, it follows that 2 is primeish.

Since 2 is even and prime, there exists a number that is even and primeish.

This is the same proof, but infinitely easier to read and write....

Even and Odd	Predicat	Domain of Discourse Integers
	$\begin{aligned} & \operatorname{Even}(x) \\ & \operatorname{Odd}(x) \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { Let a be an arbitrary even number. }\left\{\begin{array}{l} \text { Let a be arbitrary. } \\ \text { Suppose a is even. } \end{array}\right. \\ & \begin{array}{l} \text { Then, } a=2 c \text { for some } c, \text { by } \\ \text { definition of even. } \end{array} \\ & \text { Since this is english, we can } \\ & \text { combine lines like this as long as } \\ & \text { we use key words. } \end{aligned} \begin{aligned} & c^{2}=2\left(2 c^{2}\right) . \end{aligned}$		

Known vs. Unknown Statements

1. As we prove things, we'll have more and more theorems we know. When you know a theorem, start by using it.
_ If it's a for all statement, and we want to USE it, then we use Elim \forall

- If it's an exists statement, and we want to USE it, then we use Elim \exists

2. If we're trying to prove a theorem (with quantifiers), there are four possibilities:

- It's a "for all" statement (and we think it's TRUE)

Take an arbitrary x , and try to prove it for that x , and use Intro \forall

- It's an "exists" statement (and we think it's TRUE)

Find some x for which it's true (really; ANY x), and use Intro \exists

- It's a "for all" statement (and we think it's FALSE) Negate it, and prove the exists
- It's an "exists" statement (and we think it's FALSE) Negate it and prove the "for all"

Counterexamples

To disprove $\forall \mathrm{x} P(\mathrm{x})$ prove $\neg \forall \mathrm{x} \mathrm{P}(\mathrm{x})$:
$-\neg \forall x P(x) \equiv \exists x \neg P(x)$

- To prove the existential, find an x for which $P(x)$ is false
- This example is called a counterexample.

How do I start a Proof (with quantifiers)?

1. Choose a general strategy. We're building a toolkit.
2. Think about what theorems we know that might help
3. Define variables!!!!!
4. Look at the statements we're trying to prove without quantifiers (the quantifier just tells us which approach: exists -> "find one", forall -> "take arbitrary and prove it")
5. Use algebra, facts, previous theorems, etc. to prove without quantifiers
6. Put the quantifier back on

Counterexample...example

Disprove "Every non-negative integer has another number smaller than it."
$\forall x \exists y(y<x)$

Tell the reader that
we're about to use a
"counterexample".

show the negation, \exists x \forall y(y \geq x) , is true.\end{array}\right.\)

Use \exists Elim. Consider $x=0$. Use \forall Elim.	$\left\{\begin{array}{l}\text { Let } y \text { be arbitrary. }\end{array}\right.$
Prove the \forall statement.	$\left\{\begin{array}{l}\text { Since } \mathrm{y} \text { is non-negative, } y \geq 0 . \text { So, the claim } \\ \text { is true. }\end{array}\right.$
Conclude the proof.	$\left\{\begin{array}{l}\text { Thus, the original claim is false. }\end{array}\right.$

[^0]: ** By special, we mean that c is a name for a value where $P(c)$ is true. We can't use anything else about that value, so chas to be a NEW variable!

