Adam Blank
 ÇF
 Foundations of Computing I

Proof From Last Time

Show that r follows from $p, p \rightarrow q$, and $q \rightarrow r$

1. p Given
2. $p \rightarrow q$ Given
3. $q \rightarrow r$ Given
4. $q \quad M P: 1,2$
5. r MP: 3, 4

Pre-Lecture Problem

Suppose that p, and $p \rightarrow(q \wedge r)$ are true. Is q true? Can you prove it with equivalences?

CSE 311: Foundations of Computing

Lecture 7: Proofs

Inference Rules

Axioms

Example (Excluded Middle):

$$
\overline{\therefore A \vee \neg A} \quad \text { I have a proof of } A \vee \neg A .
$$

More Inference Rules

Each connective has an "introduction rule" and an "elimination rule"
"Elimination" rules go the other way. If we know $A \wedge B$, then what do we know about A and B individually?

When $A \wedge B$ is true, then A is true and B is true.

So, we if we can prove $A \wedge B$, then we can also prove A and we can also prove B.

More Inference Rules

Each connective has an "introduction rule" and an "elimination rule"
Consider "and". To know $A \wedge B$ is true, what do we need to know...?

\mathbf{A}	\mathbf{B}	$\mathbf{A} \wedge \mathbf{B}$
T	T	T
T	F	F
T	T	F
T	F	F

The only case $A \wedge B$ is true is when A and B are both true.

\wedge Introduction	
$\mathrm{A} \quad \mathrm{B}$	
$\therefore A \wedge B$	

So, we can only prove $A \wedge B$ if we already have a proof for A and we already have a proof for B.

Proofs

Show that \mathbf{r} follows from $p, p \rightarrow q$, and $p \wedge q \rightarrow r$
How To Start:
We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

Modus Ponens	
A	
$\therefore \mathrm{A} \rightarrow \mathrm{B}$	

\wedge Introduction	
$\therefore \quad \mathrm{A} \wedge \mathrm{B}$	

\wedge Elimination
$\therefore \mathrm{A} \wedge \mathrm{B}$
$\therefore \mathrm{A}$

Simple Propositional Inference Rules

Important: Application of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise).
e.g.
$\begin{array}{ll}\text { 1. } p \rightarrow q & \text { Given } \\ \text { 2. }(p \vee r) \rightarrow q & \text { Intro } \vee: 1\end{array}$

Does not follow! e.g. $p=F, q=F, r=T$

Proofs

Prove that $\neg r$ follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" for using the direct proof rule is that we write a proof that Given A, we can prove B.
- The direct proof rule:

If you have such a proof then you can conclude
that $p \rightarrow q$ is true
Example: Prove $p \rightarrow(p \vee q)$.
proof subroutine

1. p	Assumption
2. $p \vee q$	Intro v: 1

3. $p \rightarrow(p \vee q) \quad$ Direct Proof Rule

Proofs	
Prove that \neg r follows from $p \wedge$ s Used! and Used!	
39. $p \wedge s$	Given
40. s	Use our last given!
41. $\neg \neg s$	Double Negation: 40 Remember, we're allowed to use equivalences!
42. $\neg s \vee q$	Given
43. q	V Elim: 42, 41
44. $q \rightarrow \neg r$	Given
45. $\neg r$	MP: 44, 43

Proofs

Prove that $\neg r$ follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

Well, almost, let's renumber the steps:

1. $p \wedge s$
2. s
3. $\neg \neg S$
4. $\neg s \vee q$
5. q
6. $\quad q \rightarrow \neg r$
7. $\neg r$

MP: 6, 5

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \wedge q) \rightarrow r$

1. q Given
2. $(p \wedge q) \rightarrow r \quad$ Given

This is a 3.1. p Assumption
proof 3.2. $p \wedge q$ Intro $\wedge: 1,3.1$
of $p \rightarrow r$
$\begin{array}{ll}\text { 3.2. } p \wedge q & \text { Intro } \wedge: 1,3.1 \\ \text { 3.3. } r & \text { MP: } 2,3.2\end{array}$
If we know p is true.. Then, we've shown
3. $p \rightarrow r \quad$ Direct Proof Rule

Example				
Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$				
(1.1) $(p \rightarrow q) \wedge(q \rightarrow r) \quad$ Assumption (1.2) $p \rightarrow q \quad \wedge$ Elim: 1.1 (1.3) $\quad q \rightarrow r$ \wedge Elim: 1.1				

Example

Prove: $(p \wedge q) \rightarrow(p \vee q)$
1.1. $p \wedge q$
1.2. p
1.3. $\mathrm{p} \vee \mathrm{q}$

1. $(p \wedge q) \rightarrow(p \vee q)$

Assumption
Elim \wedge : 1.1
Intro v: 1.2
Direct Proof Rule

