Adam Blank Spring 2016

Foundations of Computing I

Pre-Lecture Problem

Suppose that p, and $p \to (q \land r)$ are true. Is q true? Can you prove it with equivalences?

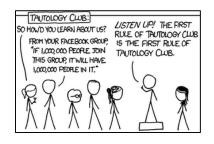
Proof From Last Time

Show that r follows from p, $p \rightarrow q$, and $q \rightarrow r$

- 1. p Given
- 2. $p \rightarrow q$ Given
- 3. $q \rightarrow r$ Given
- 4. q MP: 1, 2
- 5. r MP: 3, 4

CSE 311: Foundations of Computing

Lecture 7: Proofs

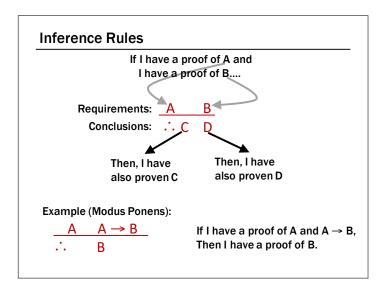


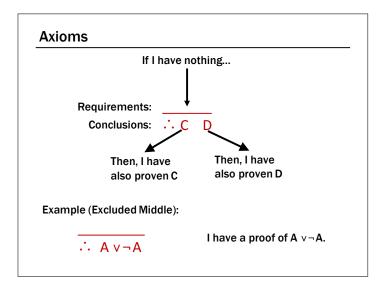
Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

- $\textbf{1.} \quad p \to q \qquad \qquad \text{Given}$
- 2. ¬a Given
- 3. $\neg q \rightarrow \neg p$ Contrapositive: 1

4. ¬p MP: 2, 3





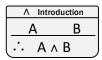
More Inference Rules

Each connective has an "introduction rule" and an "elimination rule"

Consider "and". To know A A B is true, what do we need to know...?

Α	В	АлВ
Т	Т	Т
Т	F	F
Т	Т	F
Т	F	F

The only case A A B is true is when A and B are both true.



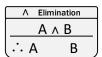
So, we can only prove A A B if we already have a proof for A and we already have a proof for B.

More Inference Rules

Each connective has an "introduction rule" and an "elimination rule" "Elimination" rules go the other way. If we know A A B, then what do we know about A and B individually?

Α	В	АлВ
Т	Т	Т
Т	F	F
Т	Т	F
Т	F	F

When $A \wedge B$ is true, then A is true and B is true.



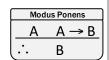
So, we if we can prove A ∧ B, then we can also prove A and we can also prove B.

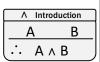
Proofs

Show that **r** follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.





Λ Elimination			
	Ал	В	
$\overline{\cdot \cdot \cdot}$	4	В	Ξ,

Proofs

Show that **r** follows from $p, p \rightarrow q$, and $p \wedge q \rightarrow r$

1. p

Given

Two visuals of the same proof. We will focus on the top one, but if the bottom one helps

you think about it, that's great!

2. $p \rightarrow q$

Given

4. $p \wedge q$

MP: 1, 2

Intro ∧: 1, 3

5. $p \wedge q \rightarrow r$ Given

MP: 4, 5

$$\begin{array}{c|c} p & p \rightarrow q \\ \hline p & q & \mathsf{MP} \\ \hline \hline p \land q & p \land q \rightarrow r \\ \hline r & \mathsf{MP} \end{array}$$

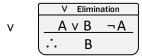
Simple Propositional Inference Rules

∧ Elimination $A \wedge B$

Introduction

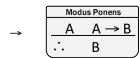
Elimination

Λ Introduction В $A \wedge B$



٨

V Introduction · A v B B v A



Direct Proof Rule Not like other rules

Important: Application of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise).

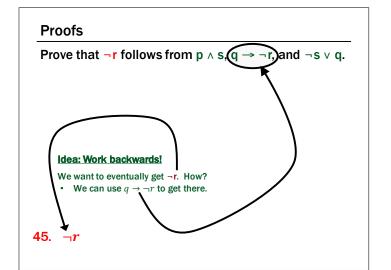
e.g.
$$\underbrace{\mathbf{1.} \ p \rightarrow q}_{\mathbf{2.} \ (p \ \forall \ r) \rightarrow q}_{\mathbf{q}}$$
 Intro \forall : $\mathbf{1}$

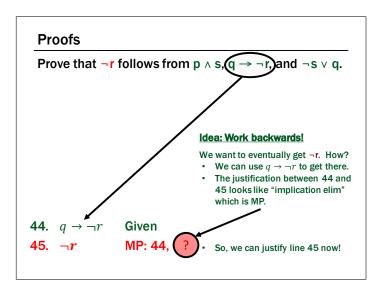
Does not follow! e.g. p=F, q=F, r=T

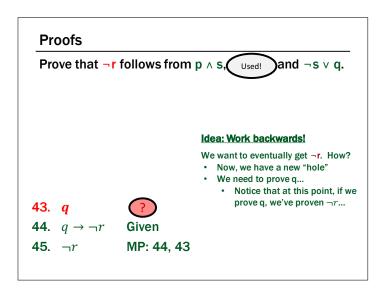
Proofs

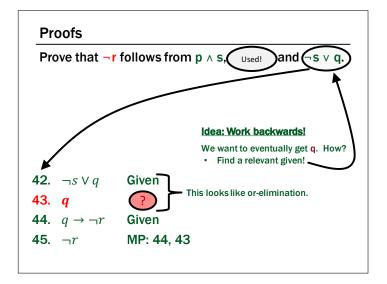
Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

Idea: Work backwards!









Proofs

Prove that $\neg r$ follows from p \land s, \bigcup Used!

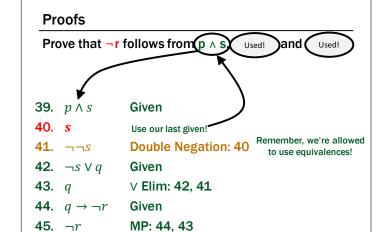
41. ¬¬*s* It's more likely that $\neg \neg s$ shows up as s...

42. $\neg s \lor q$ Given

43. *q* ∨ Elim: 42, 41

44. $q \rightarrow \neg r$ Given

45. ¬*r* MP: 44, 43



Proofs

Prove that ¬r follows from Used!

We don't have any holes in the proof left! We're done!

39. $p \wedge s$ Given

40. *s* ∧ Elim: 39

Double Negation: 40 41. ¬¬*s*

42. $\neg s \lor q$ Given

∨ Elim: 42, 41 **43**. *q*

44. $q \rightarrow \neg r$ Given

MP: 44, 43 **45**. ¬*r*

Proofs

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

Well, almost, let's renumber the steps:

Given **1.** $p \wedge s$

2. ∧ Elim: 1 S

 $\neg \neg S$ **Double Negation: 2** 3.

Given 4. $\neg s \lor q$

∨ Elim: 4, 3 5.

Given 6. $q \rightarrow \neg r$

7. MP: 6, 5 $\neg r$

To Prove An Implication: $A \rightarrow B$

- · We use the direct proof rule
- The "pre-requisite" for using the direct proof rule is that we write a proof that Given A, we can prove B.
- The direct proof rule:

If you have such a proof then you can conclude that $p \rightarrow q$ is true

Example: Prove $p \rightarrow (p \lor q)$.

proofsubroutine

1. p Assumption 2. p v q Intro v: 1

3. $p \rightarrow (p \lor q)$

Direct Proof Rule

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

Given **1**. q 2. $(p \land q) \rightarrow r$ Given

This is a proof of $p \rightarrow r$ (3.1. p 3.2. $p \land q$ Intro \land : 1, 3.1

3.3. r

Assumption

MP: 2, 3.2

If we know p is true... Then, we've shown r is true

3. $p \rightarrow r$

Direct Proof Rule

