

Foundations of Computing I

Pre-Lecture Problem

Suppose that p, and $p \to (q \land r)$ are true. Is q true? Can you prove it with equivalences?

Lecause...
P=T, T=T, r=T

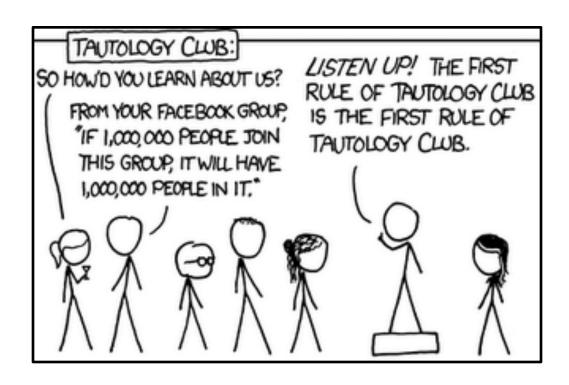
Proof From Last Time

Show that r follows from p, $p \rightarrow q$, and $q \rightarrow r$

- 1. p Given
- 2. $p \rightarrow q$ Given
- 3. q → r Given
 4. (q) MP: 1, 2
 - 5. (r) MP: 3, 4

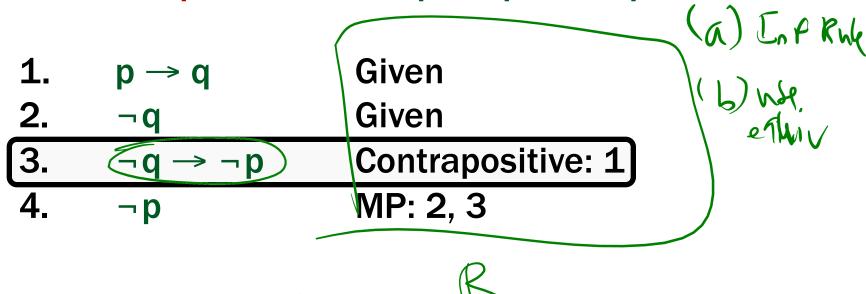
CSE 311: Foundations of Computing

Lecture 7: Proofs

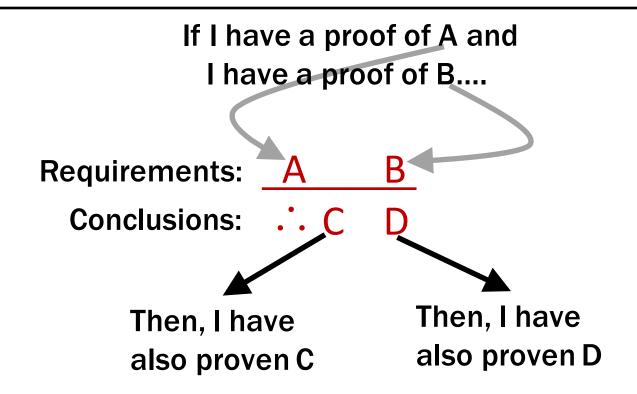


Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$



Inference Rules

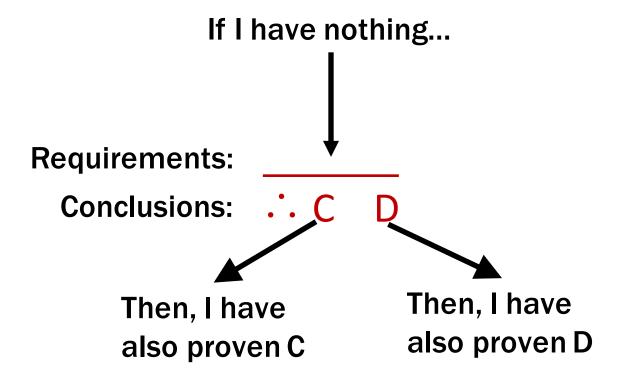


Example (Modus Ponens):

$$\begin{array}{ccc} A & A \rightarrow B \\ \therefore & B \end{array}$$

If I have a proof of A and $A \rightarrow B$, Then I have a proof of B.

Axioms



Example (Excluded Middle):

I have a proof of A ∨¬A.

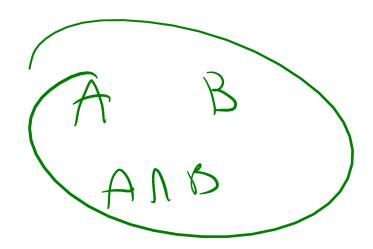
More Inference Rules

Each connective has an "introduction rule" and an "elimination rule"

Consider "and". To know A A B is true, what do we need to know...?

Α	В	АлВ

∧ Introd	uction
ANB	
$\overline{\cdot \cdot \cdot A}$	13



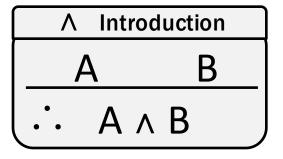
More Inference Rules

Each connective has an "introduction rule" and an "elimination rule"

Consider "and". To know A A B is true, what do we need to know...?

Α	В	АлВ
T	Т	Т
Т	F	F
Т	Т	F
Т	F	F

The only case $A \wedge B$ is true is when A and B are both true.



So, we can only prove $A \wedge B$ if we already have a proof for A and we already have a proof for B.

More Inference Rules

Each connective has an "introduction rule" and an "elimination rule" "Elimination" rules go the other way. If we know $A \wedge B$, then what do we know about A and B individually?

Α	В	АлВ
Т	Т	Т
Т	F	F
Т	Т	F
Т	F	F

When $A \wedge B$ is true, then A is true and B is true.

٨	Elimi	nation	
	Α /	١В	
· /	4	В	—

So, we if we can prove $A \wedge B$, then we can also prove A and we can also prove B.

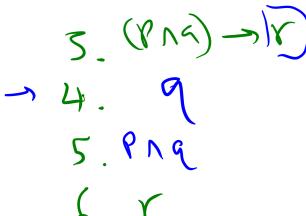
Show that r follows from $p, p \rightarrow q$, and $(p \land q) \rightarrow r$

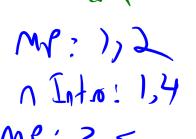
How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

Modus Ponens		
A	$A \rightarrow B$	
$\overline{\cdot \cdot \cdot}$	В	

→	1. 1P) 2. 1P->19	
	5. (PNG) ->/x	
->	4. 9	





m:),2	
n Into: 1,4	©
nf: 3,5	

Λ Intro	duction
Α	В
(∴ A /	N B

Λ	Elimination	
	ΑΛΒ	
$\left(\begin{array}{cc} \overline{\ddots} & A \end{array} \right)$	В	_

Show that **r** follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

Two visuals of the same proof. We will focus on the top one, but if the bottom one helps you think about it, that's great!

2.
$$p \rightarrow q$$

4.
$$p \wedge q$$

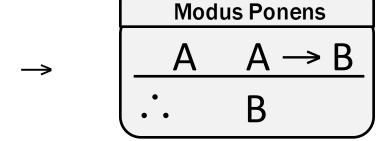
5.
$$p \wedge q \rightarrow r$$

$$\begin{array}{c|c}
p & p \to q \\
\hline
p & q \\
\hline
& p \land q \\
\hline
& p \land q \to r \\
\hline
& r
\end{array}$$
MP

Simple Propositional Inference Rules

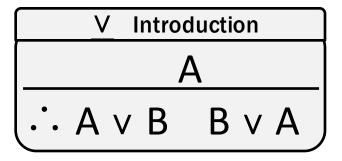
Elimination

$\begin{array}{c|cccc} & V & Elimination \\ \hline & A \lor B & \neg A \\ \hline & \cdot \cdot & B \end{array}$



Introduction

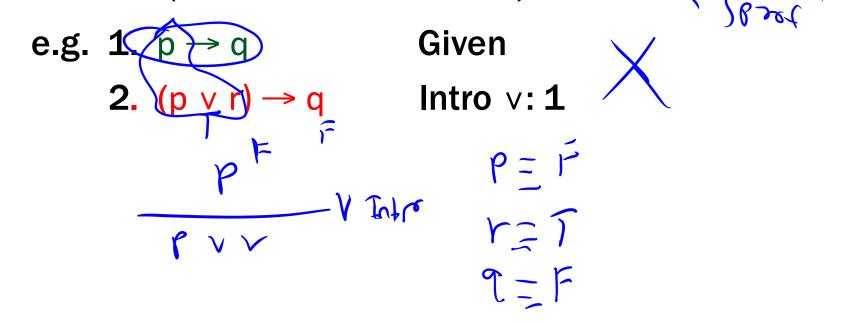
Λ	Intro	duction
	4	В
$\overline{\cdots}$	ΑΛ	В



Important: Application of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

 Inference rules only can be applied to whole formulas (not correct otherwise).



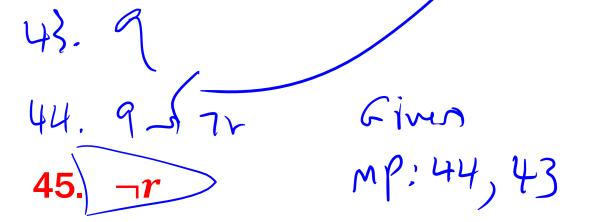
Important: Application of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.
- Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow q$$
 Given
2. $(p \lor r) \rightarrow q$ Intro \lor : 1

Does not follow! e.g. p=F, q=F, r=T

Prove that $\neg r$ follows from $p \land s(q \rightarrow \neg r)$ and $\neg s \lor q$.



Idea: Work backwards!

Prove that $\neg r$ follows from $p \land s \not q \rightarrow \neg r$, and $\neg s \lor q$. **Idea: Work backwards!** We want to eventually get ¬r. How? We can use $q \rightarrow \neg r$ to get there.

45. *¬₁*

Prove that $\neg r$ follows from $p \land s \not q \rightarrow \neg r$ and $\neg s \lor q$.

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 44 and 45 looks like "implication elim" which is MP.

44. $q \rightarrow \neg r$ Given

45. $\neg r$

MP: 44,

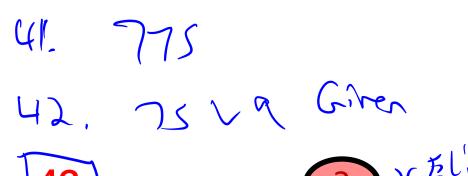
So, we can justify line 45 now!

Prove that $\neg r$ follows from $p \land s$, Used!

Given

MP: 44, 43

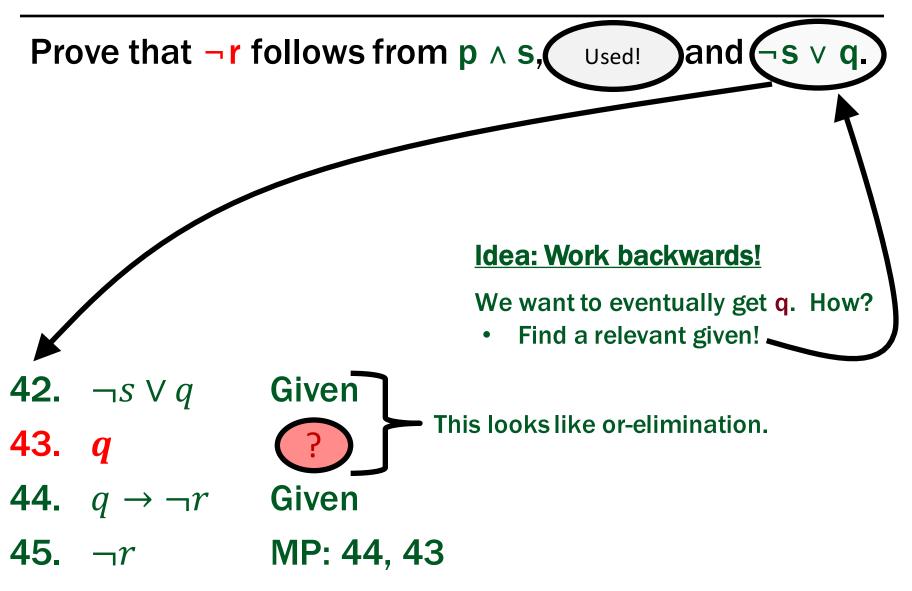
Used! and $\neg s \lor q$.



Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove q...
- Notice that at this point, if we prove q, we've proven $\neg r$...



Prove that $\neg r$ follows from $p \land s$, Used!

Used!)and

Used!

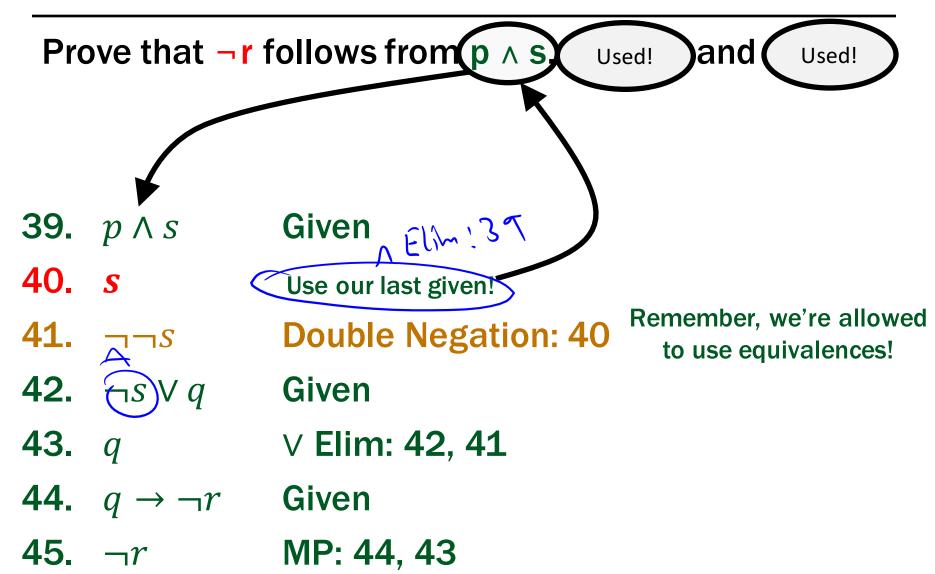
- **41.** ¬¬*s*
 - It's more likely that $\neg \neg s$ shows up as s...
- **42.** $\neg s \lor q$
- Given

43. *q*

- ∨ Elim: 42, 41
- **44.** $q \rightarrow \neg r$
- Given

45. ¬*r*

MP: 44, 43



Prove that ¬r follows from Used! Used! Used! Used!

We don't have any holes in the proof left! We're done!

39.
$$p \wedge s$$
 Given

42.
$$\neg s \lor q$$
 Given

44.
$$q \rightarrow \neg r$$
 Given

45.
$$\neg r$$
 MP: 44, 43

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

Well, almost, let's renumber the steps:

1.
$$p \wedge s$$
 Given

- **2.** *S* ∧ **Elim**: **1**
- 3. ¬¬s Double Negation: 2
- **4.** $\neg s \lor q$ **Given**
- 5. *q* ∨ Elim: 4, 3
- 6. $q \rightarrow \neg r$ Given
- 7. $\neg r$ MP: 6, 5

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" for using the direct proof rule is that we write a proof that Given A, we can prove B.
- The direct proof rule:

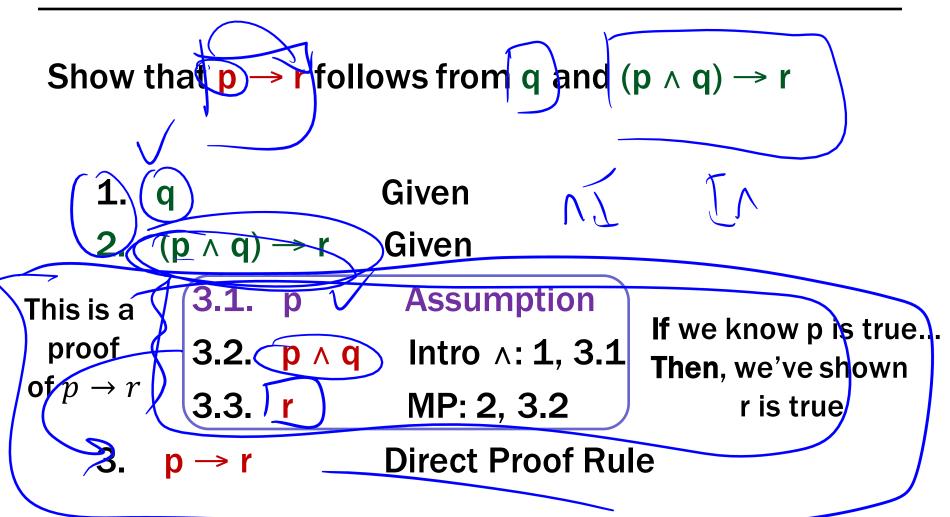
If you have such a proof then you can conclude that $p \rightarrow q$ is true

Example: Prove $p \rightarrow (p \lor q)$.

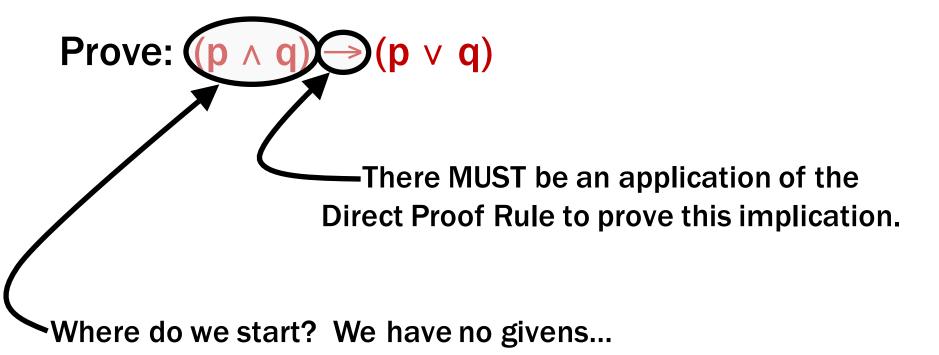
proofsubroutine

1. p Assumption
2. p
$$\vee$$
 q Intro \vee : 1
3. p \rightarrow (p \vee q) Direct Proof Rule

Proofs using the direct proof rule

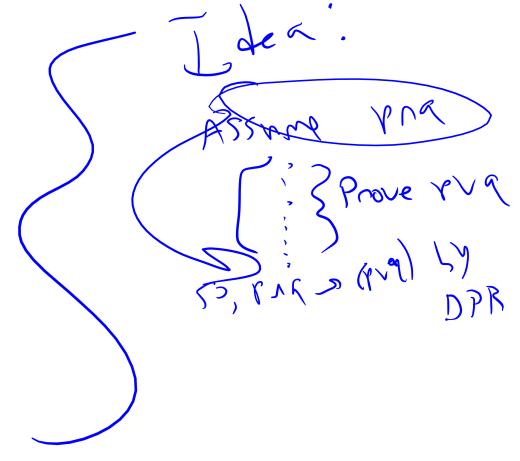


Example



Example

Prove: $(p \land q) \rightarrow (p \lor q)$



Example

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1.
$$p \wedge q$$

1.2. p
1.3. $p \vee q$
1. $(p \wedge q) \rightarrow (p \vee q)$

Assumption

Elim ∧: **1.1**

Intro v: 1.2

Direct Proof Rule