Adam Blank Spring 2016

Foundations of Computing I

* All slides are a combined effort between previous instructors of the course

HW 3 De-Brief

Think back to when you wrote your first essay.

HW 3 De-Brief

Okay, I got it. How do I schedule an appointment?

- Go to
 - http://meeting.countablethoughts.com
- If I don't respond by Monday, then it probably didn't go through; so, e-mail me.

HW 3 De-Brief

"How I Oops 311"

- · Never read the feedback, or
- · Read the feedback but don't take it seriously, or
- Read the feedback but convince yourself that "you get it now", or
- Read the feedback, talk to a TA, but don't apply what you've learned to future HWs, or...

HW 3 De-Brief

How smart you are and your grade are not the same thing.

CSE 311: Foundations of Computing

Lecture 12: Primes, GCD

Sign-Magnitude Integer Representation

n-bit signed integers

Suppose $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value

99 = 64 + 32 + 2 + 118 = 16 + 2

For n = 8:

99: 0110 0011 -18: 1001 0010

Any problems with this representation?

Two's Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose $0 \le x < 2^{n-1}$,

x is represented by the binary representation of x Suppose $\ ^0 \le x \le 2^{n-1}$,

-x is represented by the binary representation of $2^n - x$

Key property: Twos complement representation of any number y is equivalent to y mod 2ⁿ so arithmetic works mod 2ⁿ

99 = 64 + 32 + 2 + 1

18 = 16 + 2

For n = 8:

99: 0110 0011 -18: 1110 1110

Sign-Magnitude vs. Two's Complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1001 0000 0001 0010 0011 0100 0101 0110 0111

Sign-bit

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Two's complement

Two's Complement Representation

- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $2^n x$
- To compute this: Flip the bits of x then add 1:

- All 1's string is
$$2^n - 1$$
, so

Flip the bits of $x = \text{replace } x \text{ by } 2^n - 1 - x$

Basic Applications of mod

- Hashing
- · Pseudo random number generation
- · Simple cipher

Hashing

Scenario:

Map a small number of data values from a large domain $\{0,1,\ldots,M-1\}\ldots$

...into a small set of locations $\{0,1,...,n-1\}$ so one can quickly check if some value is present

- $hash(x) = x \mod p$ for p a prime close to n• or $hash(x) = (ax + b) \mod p$
- · Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

$$x_{n+1} = (a x_n + c) \bmod m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

Modular Exponentiation mod 7

х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a ¹	a ²	a³	a ⁴	a ⁵	a ⁶
1						
2						
3						
4						
5						
6						

Exponentiation

- Compute 78365⁸¹⁴⁵³
- Compute 7836581453 mod 104729
- Output is small
 - need to keep intermediate results small

Repeated Squaring - small and fast

```
Since a mod m \equiv a (mod m) for any a

we have a^2 \mod m = (a \mod m)^2 \mod m

and a^4 \mod m = (a^2 \mod m)^2 \mod m

and a^8 \mod m = (a^4 \mod m)^2 \mod m

and a^{16} \mod m = (a^8 \mod m)^2 \mod m

and a^{32} \mod m = (a^{16} \mod m)^2 \mod m
```

Can compute a^k mod m for k=2ⁱ in only i steps

Fast Exponentiation

```
public static long FastModExp(long base, long exponent, long modulus) {
    long result = 1;
    base = base % modulus;

while (exponent > 0) {
        if ((exponent % 2) == 1) {
            result = (result * base) % modulus;
            exponent -= 1;
        }
        /* Note that exponent is definitely divisible by 2 here. */
        exponent /= 2;
        base = (base * base) % modulus;
        /* The last iteration of the loop will always be exponent = 1 */
        /* so, result will always be correct. */
    }
    return result;
}

be mod m = (b<sup>2</sup>)e/2 mod m, when e is even)
    be mod m = (b*(be-1 mod m) mod m)) mod m
```

Program Trace

Let M = 104729

```
78365<sup>81453</sup> mod M
```

- = ((78365 mod M) * (78365⁸¹⁴⁵² mod M)) mod M
- = (78365 * ((78365² mod M))^{81452/2} mod M)) mod M
- = (78365 * ((78852) 40726 mod M)) mod M
- $= (78365 * ((78852^2 \mod M)^{20363} \mod M)) \mod M$
- = (78365 * (86632²⁰³⁶³ mod M)) mod M
- = (78365 * ((86632 mod M)* (86632²⁰³⁶² mod M)) mod M

= ...

= 45235

Fast Exponentiation Algorithm

Another wav:

```
81453 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^9 + 2^5 + 2^3 + 2^2 + 2^0
a^{81453} = a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{10}} \cdot a^{2^9} \cdot a^{2^5} \cdot a^{2^3} \cdot a^{2^2} \cdot a^{2^0}
a^{81453} \mod m =
(...(((((a^{2^{16}} \mod m \cdot a^{2^{13}} \mod m) \mod m \cdot a^{2^{17}} \mod m) \mod m \cdot a^{2^{17}} \mod m) \mod m \cdot a^{2^{17}} \mod m) \mod m \cdot a^{2^{19}} \mod m) \mod m \cdot a^{2^9} \mod m) \mod m
```

The fast exponentiation algorithm computes

 $a^n \mod m$ using $O(\log n)$ multiplications $\mod m$

Primality

An integer p greater than 1 is called *prime* if the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime is called *composite*.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization

```
48 = 2 · 2 · 2 · 2 · 3

591 = 3 · 197

45,523 = 45,523

321,950 = 2 · 5 · 5 · 47 · 137

1,234,567,890 = 2 · 3 · 3 · 5 · 3,607 · 3,803
```

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose for contradiction that there are n primes for some natural number n. Call them $p_1 < p_2 < ... < p_n$. Consider $P = p_1 p_2 ... p_n$, and define O = P + 1.

Case 1 (Q is prime). Then, we're done, because Q is larger than any of the primes; so, it is a new prime.

Case 2 (Q is composite). Then, there must be some prime p such that p | Q. Note that since P divides every possible prime, p | P as well. It follows that p | (Q – P) \rightarrow p | ((P + 1) – P) \rightarrow p | 1. This is impossible, because p must be at least two.

Since both cases lead to a contradiction, the original claim is true. $\label{eq:contradiction}$

Famous Algorithmic Problems

- Primality Testing
 - Given an integer n, determine if n is prime
- Factoring
 - Given an integer n, determine the prime factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347 92197322452151726400507263657518745202199786469389956 47494277406384592519255732630345373154826850791702612 21429134616704292143116022212404792747377940806653514 19597459856902143413

334780716989568987860441698482126908177047949837 137685689124313889828837938780022876147116525317 43087737814467999489

367460436667995904282446337996279526322791581643 430876426760322838157396665112792333734171433968 10270092798736308917

Factoring

Uh...fun?

Greatest Common Divisor

GCD(a, b):

Largest integer d such that $d \mid a$ and $d \mid b$

- GCD(100, 125) =
- GCD(17, 49) =
- GCD(11, 66) =
- GCD(13, 0) =
- GCD(180, 252) =

GCD and Factoring

 $a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200$ $b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750$

 $GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$

Factoring is expensive!

Can we compute GCD(a,b) without factoring?