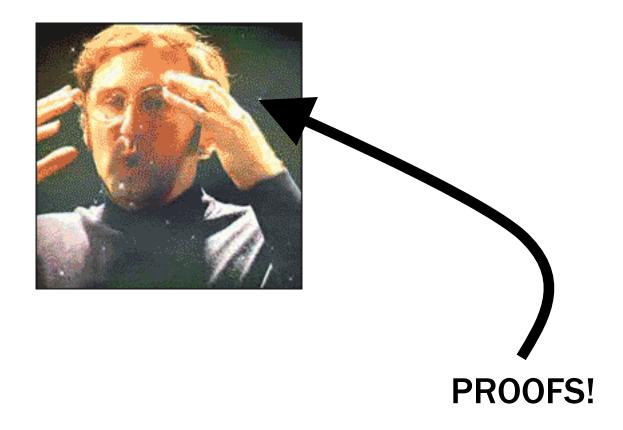


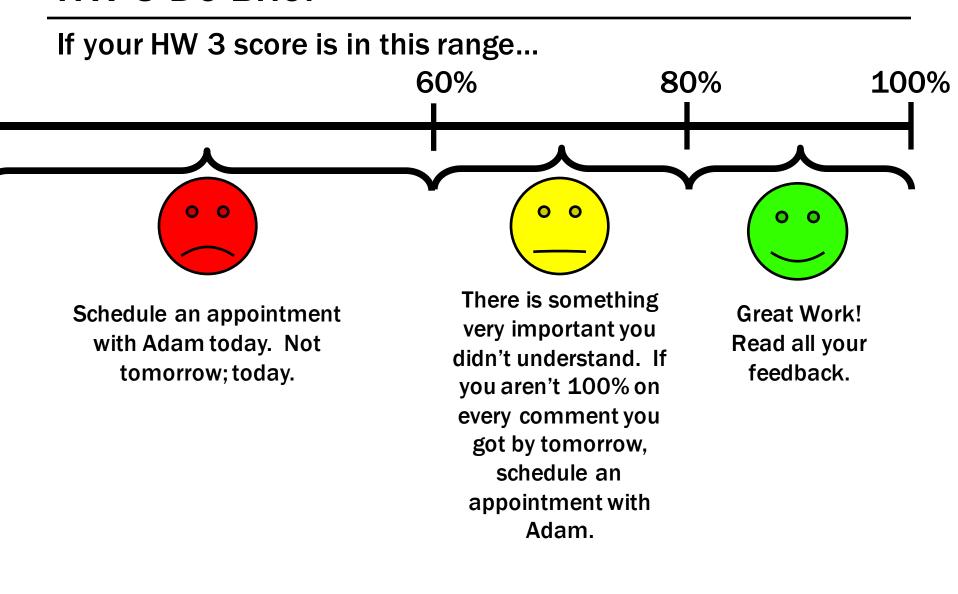
# Foundations of Computing I

\* All slides are a combined effort between previous instructors of the course



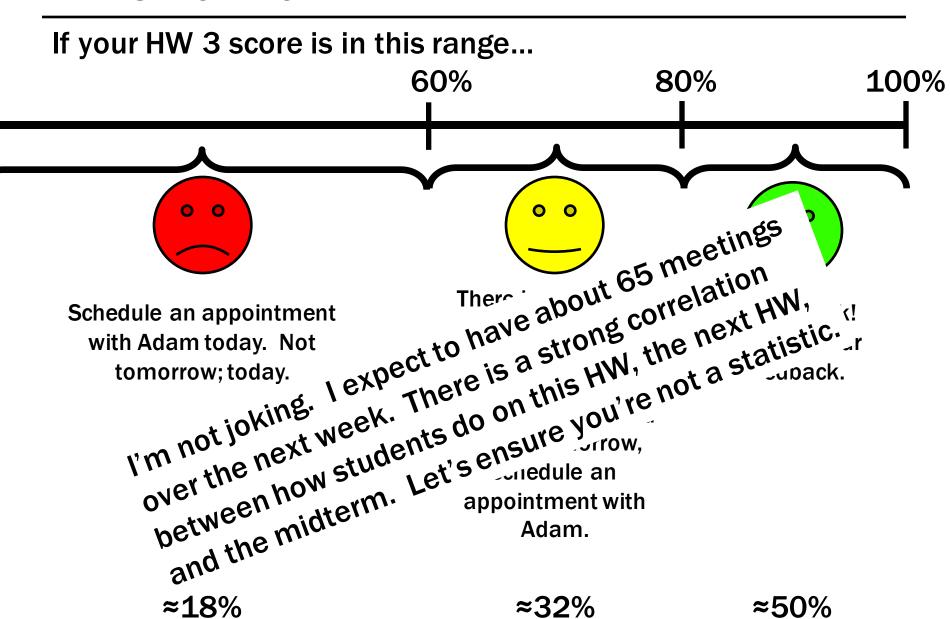
# Think back to when you wrote your first essay.

**≈18**%



**≈32**%

≈50%



Okay, I got it. How do I schedule an appointment?

 Go to <u>http://meeting.countablethoughts.com</u>

 If I don't respond by Monday, then it probably didn't go through; so, e-mail me.

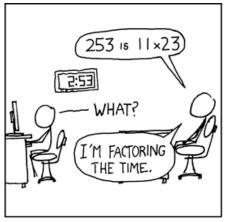
# "How I Oops 311"

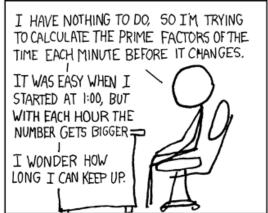
- Never read the feedback, or
- Read the feedback but don't take it seriously, or
- Read the feedback but convince yourself that "you get it now", or
- Read the feedback, talk to a TA, but don't apply what you've learned to future HWs, or...

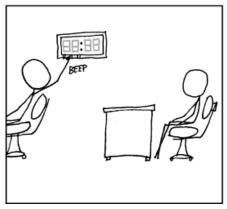
How smart you are and your grade are not the same thing.

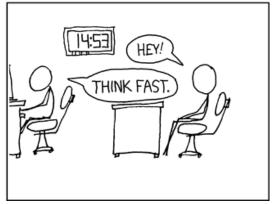
# **CSE 311: Foundations of Computing**

Lecture 12: Primes, GCD









# Sign-Magnitude Integer Representation

#### n-bit signed integers

Suppose 
$$-2^{n-1} < x < 2^{n-1}$$

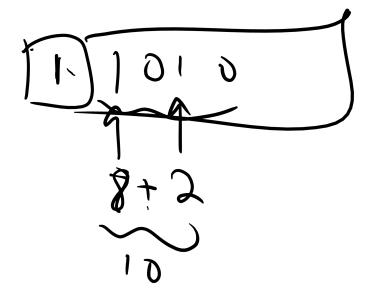
First bit as the sign, n-1 bits for the value

$$99 = 64 + 32 + 2 + 1$$
  
 $18 = 16 + 2$ 

For n = 8:

99: 0110 0011

-18: 1001 0010



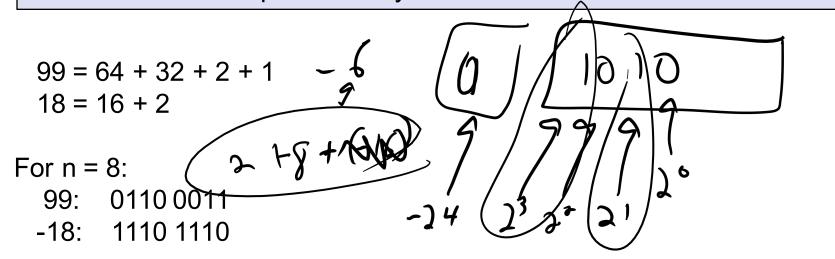
Any problems with this representation?

# **Two's Complement Representation**

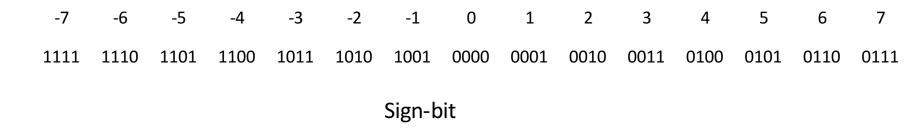
n bit signed integers, first bit will still be the sign bit

Suppose  $0 \le x < 2^{n-1}$ , x is represented by the binary representation of x Suppose  $0 \le x \le 2^{n-1}$ , -x is represented by the binary representation of  $2^n - x$ 

**Key property:** Twos complement representation of any number y is equivalent to y mod 2<sup>n</sup> so arithmetic works mod 2<sup>n</sup>



# Sign-Magnitude vs. Two's Complement



Two's complement

#### **Two's Complement Representation**

• For  $0 < x \le 2^{n-1}$ , -x is represented by the binary representation of  $2^n - x$ 

- To compute this: Flip the bits of x then add 1:
  - All 1's string is  $2^n 1$ , so Flip the bits of  $x = \text{replace } x \text{ by } 2^n - 1 - x$

#### **Basic Applications of mod**

- Hashing
- Pseudo random number generation
- Simple cipher

# Hashing

#### Scenario:

Map a small number of data values from a large domain  $\{0, 1, ..., M - 1\}$  ...

...into a small set of locations  $\{0,1,...,n-1\}$  so one can quickly check if some value is present

- $hash(x) = x \mod p$  for p a prime close to n
  - **or** hash $(x) = (ax + b) \mod p$
- Depends on all of the bits of the data
  - helps avoid collisions due to similar values
  - need to manage them if they occur

#### **Pseudo-Random Number Generation**

#### **Linear Congruential method**

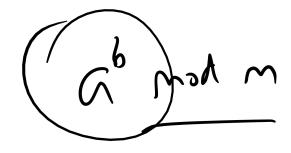
$$x_{n+1} = (a x_n + c) \bmod m$$

Choose random  $x_0$ , a, c, m and produce a long sequence of  $x_n$ 's

# **Modular Exponentiation mod 7**

|   | - |   |   | - |   |   |
|---|---|---|---|---|---|---|
| X | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6 | 6 | 5 | 4 | 3 | 2 | 1 |

|  | а | a <sup>1</sup> | a <sup>2</sup> | ) <sup>3</sup> a | a <sup>4</sup> | <b>a</b> <sup>5</sup> | a <sup>6</sup> |
|--|---|----------------|----------------|------------------|----------------|-----------------------|----------------|
|  | 1 |                |                |                  |                |                       |                |
|  | 2 |                |                |                  |                |                       |                |
|  | 3 |                |                | 6                |                |                       |                |
|  | 4 |                |                |                  |                |                       |                |
|  | 5 |                |                |                  |                |                       |                |
|  | 6 |                |                |                  |                |                       |                |



# **Exponentiation**

• Compute 78365<sup>81453</sup>

• Compute 783658145) mod 104729

((m/r)(1, m/r)) mod n = (4)m/n

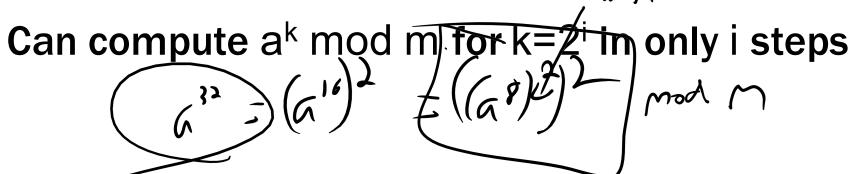
((m/r)(1, m/r)) (m/r) - (4)m/n

• Output is small

- need to keep intermediate results small

# Repeated Squaring - small and fast

we have  $a^2 \mod m = (a \mod m)^2 \mod m$  (a)  $a^3 \mod m = (a^2 \mod m)^2 \mod m$  and  $a^4 \mod m = (a^2 \mod m)^2 \mod m$  and  $a^8 \mod m = (a^4 \mod m)^2 \mod m$ Since a mod  $m \equiv a \pmod{m}$  for any a  $a^8 \mod m = (a^4 \mod m)^2 \mod m$  $a^{16} \mod m = (a^8 \mod m)^2 \mod m$ and  $(a^{32})$  mod m =  $(a^{16} \text{ mod m})^2 \text{ mod m}$ and



#### **Fast Exponentiation**

```
b^e \mod m = (b^2)^{e/2} \mod m, when e is even)

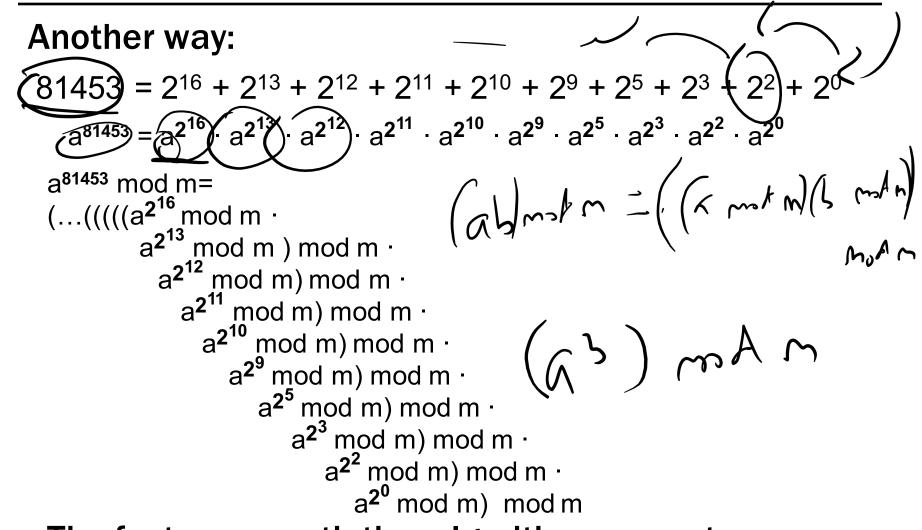
b^e \mod m = (b)^* (b^{e-1} \mod m) \mod m) mod m
```

#### **Fast Exponentiation**

```
public static long FastModExp(long base, long exponent, long modulus) {
      long result = 1;
      base = base % modulus;
      while (exponent > 0) {
          if ((exponent % 2) == 1) {
              result = (result * base) % modulus;
               exponent -= 1;
          /* Note that exponent is definitely divisible by 2 here. */
          exponent /= 2;
          base = (base * base) % modulus;
          /* The last iteration of the loop will always be exponent = 1 */
          /* so, result will always be correct. */
      return result;
         b^e \mod m = (b^2)^{e/2} \mod m, when e is even)
         b^e \mod m = (b^*(b^{e-1} \mod m) \mod m)) \mod m
```

```
78365<sup>8</sup>Y453 mod M
  = ((78365 \mod M) * (78365^{81452} \mod M)) \mod M
  = (78365 * (78365^2 \mod M))^{81452/2} \mod M)) \mod M
  =(78365)* ((78852)<sup>40726</sup> mod M)) mod M
  = (78365 * ((78852^2 \text{ mod M})^{20363} \text{ mod M})) \text{ mod M}
  = (78365 * (86632^{20363} \text{ mod M})) \text{ mod M}
  = (78365 * ((86632 mod M)* (86632<sup>20362</sup> mod M)) mod M
  = 45235
```

# **Fast Exponentiation Algorithm**



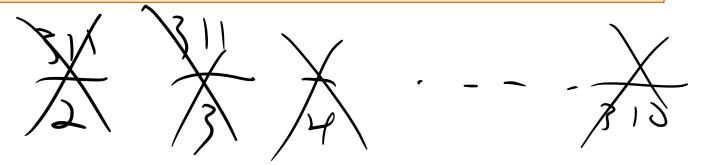
The fast exponentiation algorithm computes  $a^n \mod m$  using  $O(\log n)$  multiplications  $\mod m$ 

# **Primality**

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

311

A positive integer that is greater than 1 and is not prime is called *composite*.



#### **Fundamental Theorem of Arithmetic**

Every positive integer greater than 1 has a unique prime factorization

$$48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$$

$$591 = 3 \cdot 197$$

$$45,523 = 45,523$$

$$321,950 = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137$$

$$1,234,567,890 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803$$

$$4 20 = 20 \cdot 20 \cdot 20$$

$$-20 \cdot 2$$

#### **Euclid's Theorem**

# There are an infinite number of primes.

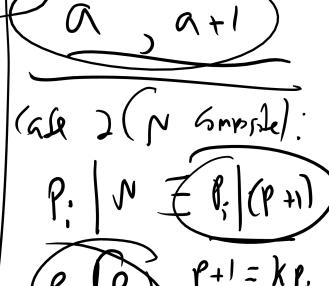
#### **Proof by contradiction:**

Suppose that there are only a finite number of primes:

$$\frac{P_1 \cdot P_2 \cdots P_r}{N = P_r + 1}$$

$$N > P_i$$

$$|C_i|$$
  $< -(K-i)C_i = 1$ 



#### **Euclid's Theorem**

#### There are an infinite number of primes.

#### **Proof by contradiction:**

Suppose for contradiction that there are n primes for some natural number n. Call them  $p_1 < p_2 < ... < p_n$ . Consider  $P = p_1p_2 ...p_n$ , and define Q = P + 1.

Case 1 (Q is prime). Then, we're done, because Q is larger than any of the primes; so, it is a new prime.

Case 2 (Q is composite). Then, there must be some prime p such that p | Q. Note that since P divides every possible prime, p | P as well. It follows that p |  $(Q - P) \rightarrow p$  |  $((P + 1) - P) \rightarrow p$  | 1. This is impossible, because p must be at least two.

Since both cases lead to a contradiction, the original claim is true.

#### Famous Algorithmic Problems

- Primality Testing
  - Given an integer n, determine if n is prime
- Factoring
  - Given an integer n, determine the prime factorization of n

# **Factoring**

#### Factor the following 232 digit number [RSA768]:



# **Factoring**

Uh...fun?

#### **Greatest Common Divisor**

```
GCD(a, b):
```

Largest integer d such that  $d \mid a$  and  $d \mid b$ 

- GCD(100, 125) =
- GCD(17, 49) =
- GCD(11, 66) =
- GCD(13, 0) =
- GCD(180, 252) =

# **GCD** and Factoring

$$a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200$$
  
 $b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750$ 

$$GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$$

Factoring is expensive!

Can we compute GCD(a,b) without factoring?