CSE 311: Foundations of Computing I

Primes Annotated Proofs

Relevant Definitions

Prime	Definition
A integer $p>1$ is prime iff the only positive factors of p are 1 and p.	

Composite	Definition
A integer $p>1$ is composite iff it's not prime. That is, an integer $p>1$ is composite iff it has a factor other than 1 and p.	

Trivial Factor

Definition
A trivial factor of an integer n is 1 or n. We call it a "trivial factor", because all numbers have these factors.

Fundamental Theorem of Arithmetic	THEOREM
Every natural number can be uniquely expressed as a product of primes raised to powers.	

\sqrt{n} is Fun Root Of n

Prove that if $n \in \mathbb{N}$ is not prime, then it has a non-trivial factor $f \in \mathbb{N}$ where $f \leq \sqrt{n}$.

Proof

Let $n \in \mathbb{N}$ be an arbitrary composite number.
Then, $n=f_{1} f_{2}$ for non-trivial factors f_{1} and f_{2}, by the definition of composite.

Suppose, for contradiction, that $f_{1}>\sqrt{n}$ and $f_{2}>$ \sqrt{n}.

Then, we have $n=f_{1} f_{2}>(\sqrt{n})(\sqrt{n})=n$. But $n \ngtr n$; so, we have a contradiction.

It follows that n has a non-trivial factor f, where $f \geq \sqrt{n}$.

Commentary \& Scratch Work

We're proving a forall statement.
We want to prove something about n; so, use what we know about n.

We go by contradiction because it's totally unclear what the factor actually is.

Our contradiction is that $n>n$ which we see immediately from our assumptions.

Conclude the proof.

Infinitely Many Primes!

Prove that there are infinitely many primes.
N.B. This proof is totally non-obvious. We would not expect you to magically come up with an insight like this without first discussing similar insights.

Proof
Suppose for contradiction that there are finitely many primes.

Since there are finitely many primes, there are n primes for some $n \in \mathbb{N}$. So, we can enumerate the primes as follows: $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$.

Consider the quantity $N=\left(p_{1} p_{2} \cdot p_{n}\right)+1$.

Either N is prime or it is composite. We go by cases.

Case 1 (N is prime):
Suppose N is prime. Then, N must be on the list $p_{1}, p_{2}, \ldots, p_{n}$. But $N>p_{i}$ for any prime p_{i}. This is a contradiction.

Case 2 (N is composite):
Suppose N is composite. Then, we know two things:

- First, $p_{i} \mid N$ for some p_{i}.
- Second, $p_{i} \mid\left(p_{1} p_{2} \cdots p_{n}\right)$, because p_{i} is in that product.

Let $P=p_{1} p_{2} \cdots p_{n}$.
Then, by definition of divides, we have $N=$ $k p_{i}$ and $P=j p_{i}$. Subtracting the equations, we have $(k-j) p_{i}=N-P=(P+1)-P=1$.

So, by definition of divides, $p_{i} \mid 1$. But this is impossible, because $p_{i} \geq 2$.

So, there is no largest prime. So, there are infinitely many primes.

Commentary \& Scratch Work

We go by contradiction, because primes are hard to deal with, and we have no idea why this is true a priori.

A direct consequence of the fact that there are finitely many of something is that we can say there are a particular number of them. This allows us to list them out.

This is the "magic" step. The general insight is that if there are no more primes, then what is the next number made out of?

The idea here is that we already have the largest prime; so, N cannot be it.

Since we're going by contradiction, the idea is to get as much useful information as possible. Eventually, the contradiction here is going to be "two consecutive numbers do not both have the same prime as a factor".

We take our two equations and massage them together.

Going back via definition, we're left with non-sense. It cannot possibly be the case that $\frac{1}{p_{i}} \in \mathbb{Z}$, because $p_{i}>1$.

Conclude the proof.

