

Foundations of Computing I

* All slides are a combined effort between previous instructors of the course

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For
$$a \in \mathbb{Z}$$
, $b \in \mathbb{Z}$, $m \in \mathbb{Z}$:
 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

$$A \equiv 0 \pmod{2}$$

This statement is the same as saying "A is even"; so, any A that is even (including negative even numbers) will work.

$$1 \equiv 0 \pmod{4}$$

This statement is false. If we take it mod 1 instead, then the statement is true.

$$A \equiv -1 \pmod{17}$$

If $A = 17x - 1 = 17x + 16$, then it works.
Note that $(m - 1) \mod m = ((m \mod m) + (-1 \mod m)) \mod m$
 $= (0 + -1) \mod m = -1 \mod m$

Divisibility

Definition: "a divides b"

For
$$a \in \mathbb{Z}$$
, $b \in \mathbb{Z}$ with $a \neq 0$:
 $a \mid b \leftrightarrow \exists (k \in \mathbb{Z}) \ b = ka$

Check Your Understanding. Which of the following are true?

Division Theorem

Division Theorem

```
For a \in \mathbb{Z}, d \in \mathbb{Z}^+:
```

Then, there exists *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we take a/d, we get a dividend

and a remainder: $q = a \operatorname{div} d$

 $r = a \bmod d$

```
public class Test2 {
    public static void main(String args[]) {
        int a = -5;
        int d = 2;
        System.out.println(a % d);
```

```
-jGRASP exec: java Test2
```

Note: $r \ge 0$ even if a < 0. Not quite the same as a % d.

Arithmetic, mod 7

$$a +_{7} b = (a + b) \mod 7$$

 $a \times_{7} b = (a \times b) \mod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

This Course So Far

Framework for Reasoning:

Logic → **More Logic** → **Proofs**

Things to Reason About

Number Theory

Sets (more more logic...?)

CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic and Applications

Modular Arithmetic: A Property

Therefore, m | (a-b) and so $a \equiv b \pmod{m}$.

Let a and b be integers, and let m be a positive integer. Then, $a \equiv b \pmod{m}$ if and only if a mod $m = b \pmod{m}$.

```
Suppose that a \equiv b \pmod{m}.
   Then, m \mid (a - b) by definition of congruence.
   So, a - b = km for some integer k by definition of divides.
   Therefore, a = b+km.
   Taking both sides modulo m we get:
           a mod m=(b+km) \mod m = b \mod m.
Suppose that a mod m = b \mod m.
   By the division theorem, a = mq + (a \mod m) and
                             b = ms + (b mod m) for some integers q,s.
   Then, a - b = (mq + (a \mod m)) - (mr + (b \mod m))
               = m(q - r) + (a \mod m - b \mod m)
               = m(q - r) since a mod m = b mod m
```

Modular Arithmetic: Another Property

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of congruence gives us $a + c \equiv b + d$ (mod m).

Modular Arithmetic: Another-nother Property

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Then, a = km + b and c = jm + d. Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + jmb + bd$.

Re-arranging gives us ac - bd = m(kjm + kd + jb). Using the definition of congruence gives us ac \equiv bd (mod m).

Example

Let n be an integer.

Prove that
$$n^2 \equiv 0 \pmod{4}$$
 or $n^2 \equiv 1 \pmod{4}$

Case 1 (n is even):

Suppose $n \equiv 0 \pmod{2}$.

Then, n = 2k for some k.

So, $n^2 = (2k)^2 = 4k^2$. So, by

definition of congruence,

 $n^2 \equiv 0 \pmod{4}$.

Let's start by looking a a small example:

$$0^2 = 0 \equiv 0 \pmod{4}$$

$$1^2 = 1 \equiv 1 \pmod{4}$$

$$2^2 = 4 \equiv 0 \pmod{4}$$

$$3^2 = 9 \equiv 1 \pmod{4}$$

$$4^2 = 16 \equiv 0 \pmod{4}$$

It looks like

$$n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}$$
, and

$$n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}$$
.

Case 2 (n is odd):

Suppose $n \equiv 1 \pmod{2}$.

Then, n = 2k + 1 for some k.

So,
$$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$$
. So,

by definition of congruence, $n^2 \equiv 1 \pmod{4}$.

n-bit Unsigned Integer Representation

Represent integer x as sum of powers of 2:

If
$$x = \sum_{i=0}^{n-1} b_i 2^i$$
 where each $b_i \in \{0,1\}$
then representation is $b_{n-1}...b_2$ b_1 b_0

$$99 = 64 + 32 + 2 + 1$$

 $18 = 16 + 2$

• For n = 8:

99: 0110 0011

18: 0001 0010

Sign-Magnitude Integer Representation

n-bit signed integers

Suppose $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value

$$99 = 64 + 32 + 2 + 1$$

 $18 = 16 + 2$

For n = 8:

99: 0110 0011

-18: 1001 0010

Any problems with this representation?

Two's Complement Representation

n bit signed integers, first bit will still be the sign bit

```
Suppose 0 \le x < 2^{n-1}, x is represented by the binary representation of x Suppose 0 \le x \le 2^{n-1}, -x is represented by the binary representation of 2^n - x
```

Key property: Twos complement representation of any number y is equivalent to y mod 2ⁿ so arithmetic works mod 2ⁿ

$$99 = 64 + 32 + 2 + 1$$

 $18 = 16 + 2$

For n = 8: 99: 0110 0011 -18: 1110 1110

Sign-Magnitude vs. Two's Complement

Two's complement