Adam Blank Spring 2016

Foundations of Computing I

* All slides are a combined effort between previous instructors of the course

Modular Arithmetic

Definition: "a is congruent to b modulo m" For $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, $m \in \mathbb{Z}$: $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $A \equiv 0 \pmod{2}$

This statement is the same as saying "A is even"; so, any A that is even (including negative even numbers) will work.

 $1 \equiv 0 \pmod{4}$

This statement is false. If we take it mod 1 instead, then the statement is true.

 $A \equiv -1 \pmod{17}$ If A = 17x - 1 = 17x + 16, then it works. Note that $(m - 1) \mod m = ((m \mod m) + (-1 \mod m)) \mod m$ $= (0 + -1) \mod m = -1 \mod m$

Divisibility

For $a \in \mathbb{Z}$, $b \in \mathbb{Z}$ with $a \neq 0$: $a \mid b \leftrightarrow \exists (k \in \mathbb{Z}) b = ka$

Check Your Understanding. Which of the following are true?

5 | 1

25 | 5 5 | 1 iff 1 = 5k 25 | 1 iff 1 = 25k

3 | 2

5 | 5 iff 5 = 5k 3 | 2 iff 2 = 3k

(5 | 25)

0 | 1 2 | 3

0 | 1 iff 1 = 0k 2 | 3 iff 3 = 2k

Division Theorem

Division Theorem

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}^+$:

Then, there exists *unique* integers q, r with $0 \le r < d$ such that a = dq + r.

To put it another way, if we take a/d, we get a dividend

and a remainder: $q = a \operatorname{div} d$

 $r = a \bmod d$

public class Test2 { public static void main(String args[]) { int a = -5; int d = 2; System.out.println(a % d); }

----jGRASP exec: java Test2 ----jGRASP: operation complete.

Note: $r \ge 0$ even if a < 0. Not guite the same as a % d.

Arithmetic, mod 7

$$a +_7 b = (a + b) \mod 7$$

 $a \times_7 b = (a \times b) \mod 7$

This Course So Far

Framework for Reasoning:

Logic → More Logic → More More Logic → Proofs

Things to Reason About

Number Theory

Sets (more more logic...?)

CSE 311: Foundations of Computing

Lecture 11: Modular Arithmetic and Applications

Modular Arithmetic: A Property

Let a and b be integers, and let m be a positive integer. Then, $a \equiv b \pmod{m}$ if and only if a mod m = b mod m.

Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence.

So, a - b = km for some integer k by definition of divides.

Therefore, a = b+km.

Taking both sides modulo m we get:

a mod $m=(b+km) \mod m = b \mod m$.

Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and

 $b = ms + (b \mod m)$ for some integers q,s.

Then, $a - b = (mq + (a \mod m)) - (mr + (b \mod m))$ = $m(q - r) + (a \mod m - b \mod m)$

= m(q - r) since a mod m = b mod m

Therefore, m | (a-b) and so $a \equiv b \pmod{m}$.

Modular Arithmetic: Another Property

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that

a - b = km, and some j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of congruence gives us $a + c \equiv b + d \pmod{m}$.

Modular Arithmetic: Another-nother Property

Let m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that

a - b = km, and some j such that c - d = jm.

Then, a = km + b and c = jm + d. Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + jmb + bd$.

Re-arranging gives us ac - bd = m(kjm + kd + jb). Using the definition of congruence gives us $ac \equiv bd \pmod{m}$.

Example

Let n be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

So, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$. So, by definition of congruence, $n^2 \equiv 1 \pmod 4$.

Then, n = 2k + 1 for some k.

n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2:

If
$$x = \sum_{i=0}^{n-1} b_i 2^i$$
 where each $b_i \in \{0,1\}$

then representation is $b_{n-1}...b_2$ b_1 b_0

99 = 64 + 32 + 2 + 118 = 16 + 2

• For n = 8:

99: 0110 0011 18: 0001 0010

Sign-Magnitude Integer Representation

n-bit signed integers

Suppose $-2^{n-1} < x < 2^{n-1}$ First bit as the sign, n-1 bits for the value

99 = 64 + 32 + 2 + 118 = 16 + 2

For n = 8:

99: 0110 0011 -18: 1001 0010

Any problems with this representation?

Sign-Magnitude vs. Two's Complement

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

1111 1110 1101 1100 1011 1010 1010 0000 0001 0010 0011 0100 0101 0110 0111

Sign-bit

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111

Two's complement

Two's Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose $0 \le x < 2^{n-1}$,

x is represented by the binary representation of x Suppose $0 \le x \le 2^{n-1}$,

-x is represented by the binary representation of $2^n - x$

Key property: Twos complement representation of any number y is equivalent to y mod 2^n so arithmetic works mod 2^n

99 = 64 + 32 + 2 + 1

18 = 16 + 2

For n = 8:

99: 0110 0011 -18: 1110 1110