
CSE 311: Foundations of Computing I

Modular Arithmetic Annotated Proofs

Relevant Definitions
a | b (“a divides b”) Definition

For a, b ∈ Z, where a 6= 0: a | b iff ∃(k ∈ Z) b = ka

a ≡ b (mod m) (“a is congruent to b modulo m) Definition

For a, b ∈ Z, m ∈ Z+: a ≡ b (mod m) iff m | (a− b)

Division Theorem Theorem

For a ∈ Z, d ∈ Z+:
There exist unique q, r ∈ Z, where 0 ≤ r < d such that a = dq + r

A Modular Arithmetic Property
Prove for all integers a, b and positive integers m, a ≡ b (mod m) ↔ a mod m = b mod m.

Proof Commentary & Scratch Work

Let a, b ∈ Z and m ∈ Z+. Prove the ∀’s. . .

We want to prove a bi-implication; so, we will have
two sub-proofs. First, we’ll assume the left and
prove the right. Then, we’ll assume the right and
prove the left.

Suppose a ≡ b (mod m).
Begin with assuming the left and proving the right.
At this point in the proof, we will be manipulating
relevant definitions until the end.

By definition of congruence, we have m | (a− b). We can’t work with ≡’s. So, use the definition to
remove the notation.

By definition of divides, we have a − b = km for
some integer k.

Divides isn’t much better; apply definitions.

Adding b to both sides, we have a = b + km.
Taking both sides mod m, we have a mod m =
(b + km) mod m = b mod m. So, a mod m =
b mod m.

Now, re-arrange the equations to get it to mods.
Manipulate until we have what we wanted.

Now, suppose a mod m = b mod m. Now, we prove the other implication. It’s the same
“unroll the definitions” idea.

By the division theorem, we have a = mka +
(a mod m) for some ka ∈ Z and b = mkb +
(b mod m) for some kb ∈ Z

We need to get to equivalences, which we can do
via divides, which we can get via equations. The
division theorem seems like the right approach.

Re-arranging both equations, we have:
a mod m = a−mka and b mod m = b−mkb.

We want the equations in terms of mod, because
we can set them equal.



Since these are equal, we have a−mka = b−mkb.
Re-arranging, we have a− b = (ka − kb)m. So, by
definition of divides, m | (a− b). So, by definition
of mod, we have a ≡ b (mod m).

Re-rolling the definitions in reverse. It’s worth not-
ing that this feels a lot like the first half of the
proof in reverse. The only difference is that it uses
different variables.

Another Modular Arithmetic Property
Prove for all integers m ∈ Z+, a, b ∈ Z, if a ≡ b (mod m) and c ≡ d (mod m), then a+ c ≡ b+ d (mod m).

Proof Commentary & Scratch Work

Let a, b ∈ Z and m ∈ Z+. Prove the ∀’s. . .

Suppose a ≡ b (mod m) and c ≡ d (mod m). Prove the implication. . .

Then, by definition of modular equivalences, we
have m | (a− b) and m | (c− d). Apply a definition

Furthermore, by definition of divides, we have k, l ∈
Z such that a− b = km and c− d = lm.

Apply a definition

Now, we actually have to think about what to do.
In particular, we’re going to “re-roll” definitions.
But how? Working backwards, we want

a+ c ≡ b+ d (mod m) ↔ m | ((a+ c)− (b+ d))

So, we put our pieces together to get there.

Adding the equations together and re-arranging, we
have

(a+ c)− (b+ d) = (a− b) + (c− d)

= km+ lm

= (k + l)m

By definition of divides, we have m | (a+ c)− (b+
d). Apply a definition

By definition of congruences, we have a+ c ≡ b+
d (mod m). Apply a definition

Another-nother Modular Arithmetic Property
Prove for all integers m ∈ Z+, a, b ∈ Z, if a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m).

Proof Commentary & Scratch Work

Let a, b ∈ Z and m ∈ Z+. Prove the ∀’s. . .

Suppose a ≡ b (mod m) and c ≡ d (mod m).



Then, by definition of modular equivalences, we
have m | (a− b) and m | (c− d). Apply a definition

Furthermore, by definition of divides, we have k, l ∈
Z such that a− b = km and c− d = lm.

Apply a definition

Solving for a and c, and multiplying the results, we
get

ac = (km+ b)(lm+ d)

= (klm)m+ (dk)m+ (bl)m+ bd

We want equations in terms of ac and bd; so, we
solve for a and c.

Taking both sides mod m, we get

ac mod m = bd mod m

By the first theorem we proved, it follows that

ac ≡ bd (mod m)
Always use theorems that have already been proven
whenever possible!

A Modular Arithmetic Proof
Prove for all integers n ∈ Z, n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4).

Proof Commentary & Scratch Work

Let n ∈ Z be arbitrary. We go by cases.
After trying small examples, it looks like mod 2 is
a good way to go! We split up our efforts into the
two cases mod 2.

Case 1 (n is even):

Suppose n is even. Then, there is some k ∈ Z
such that n = 2k.

Multiplying both sides by n, we have n2 =
(2k)2 = 4k2. So, by definition of divides and
congruences, we have n2 ≡ 0 (mod 4).

We want to prove something about n2; so, we get
an equation for n2 and start manipulating and ap-
plying theorems. . .

Case 2 (n is odd):

Suppose n is odd. Then, there is some k ∈ Z
such that n = 2k + 1.

Multiplying both sides by n, we have n2 =
(2k+1)2 = 4k2 +4k+1. Taking both sides
mod 4, we get n2 mod 4 = 1 mod 4. By
the first theorem we proved, it follows that
n2 ≡ 1 (mod 4).

We want to prove something about n2; so, we get
an equation for n2 and start manipulating and ap-
plying theorems. . .

Since the claim is true for both cases, it’s true in
general.


