CSE 311: Foundations of Computing I

Modular Arithmetic Annotated Proofs

Relevant Definitions

$a \mid b (``a divides b'')$	Definition
For $a, b \in \mathbb{Z}$, where $a \neq 0$: $a \mid b \text{ iff } \exists (k \in \mathbb{Z}) \ b = ka$	
$a \equiv b \pmod{m}$ ("a is congruent to b modulo m)	Definition
For $a, b \in \mathbb{Z}$, $m \in \mathbb{Z}^+$: $a \equiv b \pmod{m}$ iff $m \mid (a - b)$	
Division Theorem	Theorem
For $a \in \mathbb{Z}$, $d \in \mathbb{Z}^+$:	
There exist unique $q,r\in\mathbb{Z}$, where $0\leq r< d$ such that $a=dq+r$	

A Modular Arithmetic Property

Prove for all integers a, b and positive integers $m, a \equiv b \pmod{m} \leftrightarrow a \mod m = b \mod m$.

Proof	Commentary & Scratch Work
Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$.	Prove the \forall 's
	We want to prove a bi-implication; so, we will have two sub-proofs. First, we'll assume the left and prove the right. Then, we'll assume the right and prove the left.
Suppose $a \equiv b \pmod{m}$.	Begin with assuming the left and proving the right. At this point in the proof, we will be manipulating relevant definitions until the end.
By definition of congruence, we have $m \mid (a - b)$.	We can't work with \equiv 's. So, use the definition to remove the notation.
By definition of divides, we have $a - b = km$ for some integer k .	Divides isn't much better; apply definitions.
Adding b to both sides, we have $a = b + km$. Taking both sides mod m , we have $a \mod m = (b + km) \mod m = b \mod m$. So, $a \mod m = b \mod m$.	Now, re-arrange the equations to get it to mods. Manipulate until we have what we wanted.
Now, suppose $a \mod m = b \mod m$.	<i>Now, we prove the other implication. It's the same "unroll the definitions" idea.</i>
By the division theorem, we have $a = mk_a + (a \mod m)$ for some $k_a \in \mathbb{Z}$ and $b = mk_b + (b \mod m)$ for some $k_b \in \mathbb{Z}$	We need to get to equivalences, which we can do via divides, which we can get via equations. The division theorem seems like the right approach.
Re-arranging both equations, we have: $a \mod m = a - mk_a$ and $b \mod m = b - mk_b$.	We want the equations in terms of mod, because we can set them equal.

Since these are equal, we have $a - mk_a = b - mk_b$. Re-arranging, we have $a - b = (k_a - k_b)m$. So, by definition of divides, $m \mid (a - b)$. So, by definition of mod, we have $a \equiv b \pmod{m}$. Re-rolling the definitions in reverse. It's worth noting that this feels a lot like the first half of the proof in reverse. The only difference is that it uses different variables.

Another Modular Arithmetic Property

Prove for all integers $m \in \mathbb{Z}^+$, $a, b \in \mathbb{Z}$, if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.

Proof	Commentary & Scratch Work
Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$.	Prove the \forall 's
Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$.	Prove the implication
Then, by definition of modular equivalences, we have $m \mid (a - b)$ and $m \mid (c - d)$.	Apply a definition
Furthermore, by definition of divides, we have $k, l \in \mathbb{Z}$ such that $a - b = km$ and $c - d = lm$.	Apply a definition
	Now, we actually have to think about what to do. In particular, we're going to ''re-roll'' definitions. But how? Working backwards, we want
	$a + c \equiv b + d \pmod{m} \leftrightarrow m \mid ((a + c) - (b + d))$
	So, we put our pieces together to get there.
Adding the equations together and re-arranging, we have	
(a+c) - (b+d) = (a-b) + (c-d)	
= km + lm	
=(k+l)m	
By definition of divides, we have $m \mid (a+c) - (b+d)$.	Apply a definition
By definition of congruences, we have $a + c \equiv b + d \pmod{m}$.	Apply a definition

Another-nother Modular Arithmetic Property

Prove for all integers $m \in \mathbb{Z}^+$, $a, b \in \mathbb{Z}$, if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$.

Proof	Commentary & Scratch Work	
Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$.	Prove the \forall 's	
Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$.		

Then, by definition of modular equivalences, we have $m \mid (a - b)$ and $m \mid (c - d)$.	Apply a definition
Furthermore, by definition of divides, we have $k, l \in \mathbb{Z}$ such that $a - b = km$ and $c - d = lm$.	Apply a definition
Solving for a and c , and multiplying the results, we get ac = (km + b)(lm + d) $= (klm)m + (dk)m + (bl)m + bd$	We want equations in terms of ac and bd ; so, we solve for a and c .
Taking both sides mod m , we get	
$ac \bmod m = bd \bmod m$	
By the first theorem we proved, it follows that $ac \equiv bd \;({\rm mod} \; m)$	Always use theorems that have already been proven whenever possible!

A Modular Arithmetic Proof

Prove for all integers $n \in \mathbb{Z}$, $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$.

Proof	Commentary & Scratch Work
Let $n \in \mathbb{Z}$ be arbitrary. We go by cases.	After trying small examples, it looks like mod 2 is a good way to go! We split up our efforts into the two cases mod 2.
Case 1 (n is even):	
Suppose n is even. Then, there is some $k \in \mathbb{Z}$ such that $n = 2k$.	
Multiplying both sides by n , we have $n^2 = (2k)^2 = 4k^2$. So, by definition of divides and congruences, we have $n^2 \equiv 0 \pmod{4}$.	We want to prove something about n^2 ; so, we get an equation for n^2 and start manipulating and ap- plying theorems
Case 2 (n is odd):	
Suppose n is odd. Then, there is some $k \in \mathbb{Z}$ such that $n = 2k + 1$.	
Multiplying both sides by n , we have $n^2 = (2k+1)^2 = 4k^2 + 4k + 1$. Taking both sides mod 4, we get $n^2 \mod 4 = 1 \mod 4$. By the first theorem we proved, it follows that $n^2 \equiv 1 \pmod{4}$.	We want to prove something about n^2 ; so, we get an equation for n^2 and start manipulating and applying theorems
Since the claim is true for both cases, it's true in general.	