Relevant Definitions

$a \mid b$ (" a divides b ")	Definition
For $a, b \in \mathbb{Z}$, where $a \neq 0:$	$a \mid b$ iff $\exists(k \in \mathbb{Z}) b=k a$
$a \equiv b(\bmod m)$ (" a is congruent to b modulo $m)$	Definition
For $a, b \in \mathbb{Z}, m \in \mathbb{Z}^{+}:$	$a \equiv b(\bmod m)$ iff $m \mid(a-b)$

Division Theorem

Theorem
For $a \in \mathbb{Z}, d \in \mathbb{Z}^{+}$:
There exist unique $q, r \in \mathbb{Z}$, where $0 \leq r<d$ such that $a=d q+r$

A Modular Arithmetic Property

Prove for all integers a, b and positive integers $m, a \equiv b(\bmod m) \leftrightarrow a \bmod m=b \bmod m$.

Proof
Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$.

Suppose $a \equiv b(\bmod m)$.

By definition of congruence, we have $m \mid(a-b)$.
By definition of divides, we have $a-b=k m$ for some integer k.

Adding b to both sides, we have $a=b+k m$. Taking both sides mod m, we have $a \bmod m=$ $(b+k m) \bmod m=b \bmod m$. So, $a \bmod m=$ $b \bmod m$.

Now, suppose $a \bmod m=b \bmod m$.
By the division theorem, we have $a=m k_{a}+$ $(a \bmod m)$ for some $k_{a} \in \mathbb{Z}$ and $b=m k_{b}+$ $(b \bmod m)$ for some $k_{b} \in \mathbb{Z}$

Re-arranging both equations, we have: $a \bmod m=a-m k_{a}$ and $b \bmod m=b-m k_{b}$.

Commentary \& Scratch Work
Prove the \forall 's. . .
We want to prove a bi-implication; so, we will have two sub-proofs. First, we'll assume the left and prove the right. Then, we'll assume the right and prove the left.

Begin with assuming the left and proving the right. At this point in the proof, we will be manipulating relevant definitions until the end.

We can't work with \equiv 's. So, use the definition to remove the notation.

Divides isn't much better; apply definitions.

Now, re-arrange the equations to get it to mods. Manipulate until we have what we wanted.

Now, we prove the other implication. It's the same "unroll the definitions" idea.

We need to get to equivalences, which we can do via divides, which we can get via equations. The division theorem seems like the right approach.

We want the equations in terms of mod, because we can set them equal.

Since these are equal, we have $a-m k_{a}=b-m k_{b}$. Re-arranging, we have $a-b=\left(k_{a}-k_{b}\right) m$. So, by definition of divides, $m \mid(a-b)$. So, by definition of \bmod, we have $a \equiv b(\bmod m)$.

Re-rolling the definitions in reverse. It's worth noting that this feels a lot like the first half of the proof in reverse. The only difference is that it uses different variables.

Another Modular Arithmetic Property

Prove for all integers $m \in \mathbb{Z}^{+}, a, b \in \mathbb{Z}$, if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$.

Proof

Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$.
Suppose $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$.
Then, by definition of modular equivalences, we have $m \mid(a-b)$ and $m \mid(c-d)$.

Furthermore, by definition of divides, we have $k, l \in$ \mathbb{Z} such that $a-b=k m$ and $c-d=l m$.

Commentary \& Scratch Work

Prove the \forall 's. . .
Prove the implication...

Apply a definition

Apply a definition
Now, we actually have to think about what to do. In particular, we're going to "re-roll"' definitions.
But how? Working backwards, we want
$a+c \equiv b+d(\bmod m) \leftrightarrow m \mid((a+c)-(b+d))$
So, we put our pieces together to get there.

Apply a definition

Apply a definition

Another-nother Modular Arithmetic Property

Prove for all integers $m \in \mathbb{Z}^{+}, a, b \in \mathbb{Z}$, if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod m)$.

Proof	Commentary \& Scratch Work
Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$.	Prove the $\forall ' s \ldots$
Suppose $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$.	

Then, by definition of modular equivalences, we have $m \mid(a-b)$ and $m \mid(c-d)$.

Furthermore, by definition of divides, we have $k, l \in$ \mathbb{Z} such that $a-b=k m$ and $c-d=l m$.

Solving for a and c, and multiplying the results, we get

$$
\begin{aligned}
a c & =(k m+b)(l m+d) \\
& =(k l m) m+(d k) m+(b l) m+b d
\end{aligned}
$$

Taking both sides mod m, we get

$$
a c \bmod m=b d \bmod m
$$

By the first theorem we proved, it follows that

$$
a c \equiv b d(\bmod m)
$$

Apply a definition

Apply a definition

We want equations in terms of $a c$ and $b d$; so, we solve for a and c.

Always use theorems that have already been proven whenever possible!

A Modular Arithmetic Proof

Prove for all integers $n \in \mathbb{Z}, n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.

Proof

Let $n \in \mathbb{Z}$ be arbitrary. We go by cases.

Case 1 (n is even):
Suppose n is even. Then, there is some $k \in \mathbb{Z}$ such that $n=2 k$.

Multiplying both sides by n, we have $n^{2}=$ $(2 k)^{2}=4 k^{2}$. So, by definition of divides and congruences, we have $n^{2} \equiv 0(\bmod 4)$.

Case 2 (n is odd):
Suppose n is odd. Then, there is some $k \in \mathbb{Z}$ such that $n=2 k+1$.

Multiplying both sides by n, we have $n^{2}=$ $(2 k+1)^{2}=4 k^{2}+4 k+1$. Taking both sides $\bmod 4$, we get $n^{2} \bmod 4=1 \bmod 4$. By the first theorem we proved, it follows that $n^{2} \equiv 1(\bmod 4)$.

Since the claim is true for both cases, it's true in general.

Commentary \& Scratch Work
After trying small examples, it looks like mod 2 is a good way to go! We split up our efforts into the two cases mod 2.

We want to prove something about n^{2}; so, we get an equation for n^{2} and start manipulating and applying theorems...

We want to prove something about n^{2}; so, we get an equation for n^{2} and start manipulating and applying theorems...

