

Foundations of Computing I

Some Reminders/Hints for HW3

Style matters in proofs!

> Do NOT manipulate large statements by equivalences! This is horrible style and will lose points if there is a significantly cleaner proof.

Our inference rules can only prove things true. Do not "prove the negation false"! It doesn't make sense.

After you're done writing your proof, you should proof-read (heh) it.

Set Operations

$A \cup B=\{x:(x \in A) \vee(x \in B)\}$ Union
$A \cap B=\{x:(x \in A) \wedge(x \in B)\}$ Intersection

$A \backslash B=\{x:(x \in A) \wedge(x \notin B)\}$ Set Difference

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{4,5,6\} \\
& C=\{3,4\}
\end{aligned}
$$

QUESTIONS

Using A, B, C and set operations, make...
$[6]=A \cup B=A \cup B \cup C$
$\{3\}=C \backslash B=A \backslash B=A \cap B$
$\{1,2\}=A \backslash C=(A \cup B) \backslash C$

More Set Operations

$A \oplus B=\{x:(x \in A) \oplus(x \in B)\}$

Symmetric Difference

$$
\bar{A}=\{x: x \notin A\}
$$

(with respect to universe U)
Complement

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{1,4,2,6\} \\
& C=\{1,2,3,4\}
\end{aligned}
$$

QUESTIONS

Let $S=\{1,2\}$.
If the universe is A, then \bar{S} is... $\quad \mathrm{A} \backslash \mathbf{S}=\{3\}$ If the universe is B, then \bar{S} is... $\quad B \backslash \mathbf{S}=\{4,6\}$ If the universe is C, then \bar{S} is... $\quad \mathbf{C} \backslash \mathbf{S}=\{3,4\}$

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A)=\{B: B \subseteq A\}
$$

- Let Days = $\{\mathrm{M}, \mathrm{W}, \mathrm{F}\}$. Suppose we wanted to know the possible ways that we could allocate class days to be cancelled. Let's call this set \mathcal{P} (Days).

$$
\begin{aligned}
& \text { e.g. } \mathcal{P} \text { (Days) }=\{ \\
& \varnothing \\
&\{M\},\{W\},\{F\}, \\
&\{M, W\},\{W, F\},\{M, F\}, \\
&\{M, W, F\} \\
&\}
\end{aligned}
$$

Cartesian Product

$A \times B=\{(a, b): a \in A, b \in B\}$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$, $(2, a),(2, b),(2, c)\}$.
$\mathrm{A} \times \varnothing=\{(\mathrm{a}, \mathrm{b}): \mathrm{a} \in \mathrm{A} \wedge \mathrm{b} \in \emptyset\}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a} \in \mathrm{A} \wedge \mathrm{F}\}=\varnothing$

Russell's Paradox

$$
S=\{x: x \notin x\}
$$

Suppose for contradiction that $S \in S$. Then, by definition of $S, S \notin \mathbf{S}$, but that's a contradiction.

Suppose for contradiction that $S \notin S$. Then, by definition of the set comprehension, $S \in S$, but that's a contradiction.

This is reminiscent of the truth value of the statement "This statement is false."

It's Boolean algebra again

- Definition for \cup based on \mathbf{v}

$$
A \cup B=\{x:(x \in A) \vee(x \in B)\}
$$

- Definition for \cap based on \wedge

$$
A \cap B=\{x:(x \in A) \wedge(x \in B)\}
$$

- Complement works like \neg

$$
\bar{A}=\{x: x \notin A\}
$$

De Morgan's Laws

Prove $\overline{A \cup B}=\bar{A} \cap \bar{B}$
Let U be the universe.

$$
\begin{aligned}
\overline{A \cup B} & =\{x: x \notin A \cup B\} \\
& =\{x: \neg(x \in A \cup B)\} \\
& =\{x: \neg((x \in A) \vee(x \in B))\} \\
& =\{x:(x \notin A) \wedge(x \notin B)\} \\
& =\{x:(x \in \bar{A}) \wedge(x \in \bar{B})\} \\
& =\{x:(x \in \bar{A})\} \cap\{x:(x \in \bar{B})\} \\
& =\bar{A} \cap \bar{B}
\end{aligned}
$$

Prove $\overline{A \cap B}=\bar{A} \cup \bar{B}$

De Morgan's Laws

Prove $\overline{A \cap B}=\bar{A} \cup \bar{B}$
Let U be the universe.

$$
\begin{aligned}
\overline{A \cap B} & =\{x: x \notin A \cap B\} \\
& =\{x: \neg(x \in A \cap B)\} \\
& =\{x: \neg((x \in A) \wedge(x \in B))\} \\
& =\{x:(x \notin A) \vee(x \notin B)\} \\
& =\{x:(x \in \bar{A}) \vee(x \in \bar{B})\} \\
& =\{x:(x \in \bar{A})\} \cup\{x:(x \in \bar{B})\} \\
& =\bar{A} \cup \bar{B}
\end{aligned}
$$

Distributive Laws

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$

One More

Prove $(\mathrm{A} \cap B) \subseteq A$
Remember the definition of subset?
$X \subseteq Y \leftrightarrow \forall x(x \in X \rightarrow x \in Y)$

Let x be an arbitrary element of $A \cap B$. Then, by definition of $\mathrm{A} \cap B, \mathrm{x} \in A$ and $\mathrm{x} \in$ B. It follows that $\mathrm{x} \in A$, as required.

Representing Sets Using Bits

- Suppose universe U is $\{1,2, \ldots, n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

$$
\begin{array}{ll}
b_{1} b_{2} \ldots b_{n} \text { where } & b_{i}=1 \text { when } i \in B \\
& b_{i}=0 \text { when } i \notin B
\end{array}
$$

- Called the characteristic vector of set B
- Given characteristic vectors for A and B
- What is characteristic vector for $A \cup B ? A \cap B$?

UNIX/Linux File Permissions

- ls -l

$$
\begin{aligned}
& \text { drwxr-xr-x ... Documents/ } \\
& \text {-rw-r--r-- ... file1 }
\end{aligned}
$$

- Permissions maintained as bit vectors
- Letter means bit is 1
- "-" means bit is 0 .

CSE 311: Foundations of Computing

Lecture 10: Modular Arithmetic

Number Theory (and applications to computing)

- Branch of Mathematics with direct relevance to computing
- Many significant applications
- Cryptography
- Hashing
- Security
- Important tool set

Modular Arithmetic

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 364*24*60*60*100;
    public static void main(String args[]) {
            System.out.println(
            "I will be alive for at least " +
            SEC_IN_YEAR * 101 + " seconds."
        );
    }
}
```

```
----jGRASP exec: java Test
```

----jGRASP exec: java Test
I will be alive for at least -186619904 seconds.
I will be alive for at least -186619904 seconds.
----jGRASP: operation complete.

```
    ----jGRASP: operation complete.
```


Divisibility

$$
\begin{array}{|l}
\hline \text { Definition: "a divides } \mathrm{b} \text { " } \\
\hline \text { For } a \in \mathbb{Z}, b \in \mathbb{Z} \text { with } a \neq 0 \text { : } \\
\quad a \mid b \leftrightarrow \exists(k \in \mathbb{Z}) \mathrm{b}=\mathrm{ka} \\
\hline
\end{array}
$$

Check Your Understanding. Which of the following are true?

1 | 5 iff $5=1 k$

25|5
25 | 1 iff 1 = 25k

1| 25 iff $25=1 \mathrm{k}$

$5 \mid 5$ iff $5=5 k$
$0 \mid 1$
2|3
0 | 1 iff $1=0 k$
2| 3 iff 3 = 2k

Division Theorem

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}^{+}$:
Then, there exists unique integers q, r with $0 \leq r<d$ such that $a=d q+r$.

To put it another way, if we take a / d, we get a dividend and a remainder: $q=a \operatorname{div} d \quad r=a \bmod d$

```
        public class Test2 {
        public static void main(String args[]) {
            int a = -5;
            int d = 2;
            System.out.println(a % d);
    }
}
```

jGRASP exec: java Test2
-1
jGRASP: operation complete.

Note: $\mathrm{r} \geq 0$ even if $\mathrm{a}<0$. Not quite the same as a $\% \mathrm{~d}$.

Arithmetic, mod 7

$$
\begin{aligned}
& a++_{7} b=(a+b) \bmod 7 \\
& a x_{7} b=(a \times b) \bmod 7
\end{aligned}
$$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

```
Definition: "a is congruent to b modulo m"
For }a\in\mathbb{Z},b\in\mathbb{Z},\textrm{m}\in\mathbb{Z}\mathrm{ :
    a\equivb(mod}m)\leftrightarrowm|(a-b
```

Check Your Understanding. What do each of these mean? When are they true?
$\mathrm{A} \equiv 0(\bmod 2)$
This statement is the same as saying " A is even"; so, any A that is even (including negative even numbers) will work.

$$
1 \equiv 0(\bmod 4)
$$

This statement is false. If we take it mod 1 instead, then the statement is true.
$\mathrm{A} \equiv-1(\bmod 17)$ If $A=17 x-1=17 x+16$, then it works. Note that $(m-1) \bmod m=((m \bmod m)+(-1 \bmod m)) \bmod m$

$$
=(0+-1) \bmod m=-1 \bmod m
$$

Modular Arithmetic: A Property

Let a and b be integers, and let m be a positive integer. Then, $a \equiv b(\bmod m)$ if and only if a $\bmod m=b \bmod m$.
Suppose that $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$.
Then, $\mathrm{m} \mid(\mathrm{a}-\mathrm{b})$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.
Taking both sides modulo m we get: a $\bmod m=(b+k m) \bmod m=b \bmod m$.
Suppose that a $\bmod \mathrm{m}=\mathrm{b} \bmod \mathrm{m}$.
By the division theorem, $a=m q+(a \bmod m)$ and

$$
b=m s+(b \bmod m) \text { for some integers } q, s .
$$

Then, $\mathrm{a}-\mathrm{b}=(\mathrm{mq}+(\mathrm{a} \bmod \mathrm{m}))-(\mathrm{mr}+(\mathrm{b} \bmod \mathrm{m}))$

$$
\begin{aligned}
& =m(q-r)+(a \bmod m-b \bmod m) \\
& =m(q-r) \text { since } a \bmod m=b \bmod m
\end{aligned}
$$

Therefore, $\mathrm{m} \mid(\mathrm{a}-\mathrm{b})$ and so $a \equiv b(\bmod m)$.

