Adam Blank

Spring 2016

SSE SIF

Foundations of Computing I

Boy It's Hot In Here!

- Yep. The room doesn't have enough seats.
- Yep. The room is boiling hot.
- I tried to get a new room. There wasn't one $\ensuremath{\mathfrak{S}}$

Collaboration Policy

· There are two types of HW questions:

- Written:

You may work with other students, but you must write your work up individually.

- Online:

You **may not discuss these with anyone other than course staff!** You will have multiple attempts though!

$p \rightarrow q$

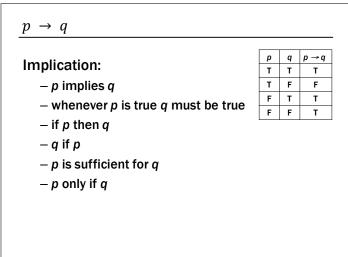
(2) "I have collected all 151 Pokémon only if I am a Pokémon master"

These sentences are opposites of each other:

- (1) "Pokémon masters have all 151 Pokémon"
- (2) "People who have 151 Pokémon are Pokémon masters"

So, the implications are:

- (1) If I am a Pokémon master, then I have collected all 151 Pokémon.
- (2) If I have collected all 151 Pokémon, then I am a Pokémon master.



A Note On Formality

Console.WriteLine("Hello World!");

VS.

System.out.println("Hello World!");

It's clear what both of these mean, but the Java compiler will only accept one and the C# compiler will accept the other. Neither one of them is WRONG, it's just a context change.

Why are we talking about this? We're dealing with a formal language here:

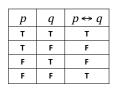
$$p \rightarrow q$$
 vs. $p \Rightarrow q$

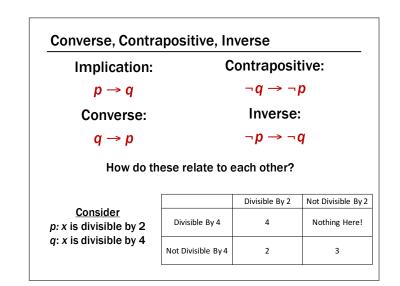
Our formal language uses the former.

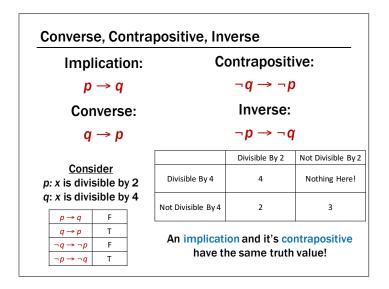
You may not use the latter.

Biconditional: $p \leftrightarrow q$

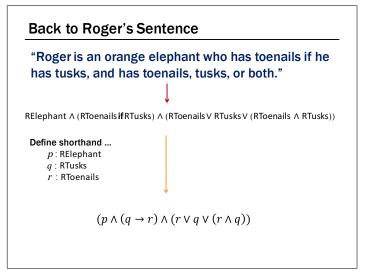
- p iff q
- p is equivalent to q
- *p* implies *q* and *q* implies *p*

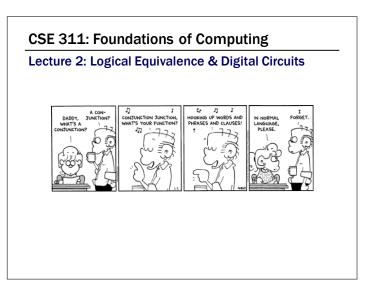






	Roger's Sentence with a Truth Table											
p	q	r	$q \rightarrow r$	$p \wedge (q \rightarrow r)$	$r \lor q$	$r \wedge q$	$(r \lor q) \lor (r \land q)$	$p \land (q \longrightarrow r) \land (r \lor q) \lor (r \land q)$				
Т	т	т	т	т	т	т	т	т				
т	т	F	F	F	т	F	т	F				
т	F	т	т	т	т	F	т	т				
Т	F	F	т	т	F	F	F	F				
F	т	т	т	F	т	т	т	F				
F	т	F	F	F	т	F	т	F				
F	F	т	т	F	т	F	т	F				
F	F	F	т	F	F	F	F	F				





Tautologies!

Terminology: A compound proposition is a...

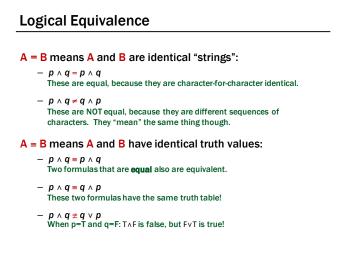
- Tautology if it is always true
- Contradiction if it is always false
- Contingency if it can be either true or false

p v ¬p

This is a tautology. It's called the "law of the excluded middle. If p is true, then $p \mathbf{v} \neg p$ is true. If p is false, then $p \mathbf{v} \neg p$ is true.

 $p \oplus p$ This is a contradiction. It's always false no matter what truth value p takes on.

 $\begin{array}{l} (p \rightarrow q) \land p \\ \\ \text{This is a contingency.} & \text{When } p=T, \ q=T, \ (T \rightarrow T) \land T \ \text{is true.} \\ \\ \text{When } p=T, \ q=F, \ (T \rightarrow F) \land T \ \text{is false.} \end{array}$



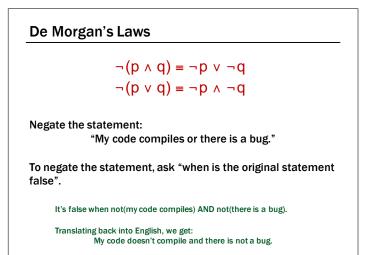
$A \leftrightarrow B$ vs. A = B

De Morgan's Laws

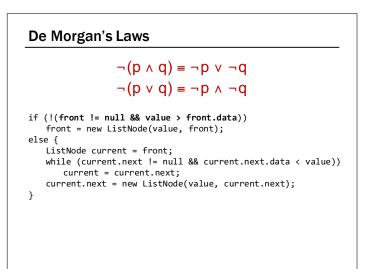
A = B is an assertion over all possible truth values that A and B always have the same truth values.

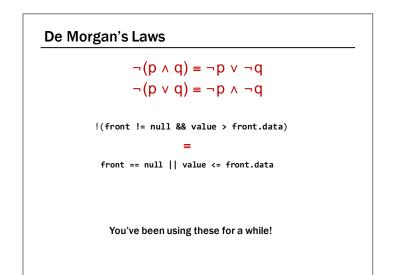
A \Leftrightarrow B is a **proposition** which depends on hat may be true or false depending on the truth values of the variables in A and B.

A = B and $(A \leftrightarrow B) = T$ have the same meaning.



Example: $\neg (p \land q) \equiv (\neg p \lor \neg q)$ $\neg (p \land q) \nleftrightarrow (\neg p \lor \neg q)$ pq $\neg (p \land q)$ ¬p $\neg q$ $\neg p \lor \neg q$ p∧q ΤT F F т F F т TF F т F т т т FΤ Т F т F т т FF т т т F т т





$p \rightarrow q \equiv \neg p \lor q$							
$p q p \rightarrow q \neg p \neg p \lor q \qquad p \rightarrow q \leftrightarrow \neg p \lor q$							
T T F T T							
T F F F F T							
FTTTTT							
F F T T T T							

ome Equivale	nces Re	elated to Implication
$p \rightarrow q$	=	¬p∨q
$p \rightarrow q$	=	$\neg q \rightarrow \neg p$
p ↔ d	=	$(p \rightarrow q) \land (q \rightarrow p)$
p ↔ d	=	¬p ↔ ¬q

Properties of Log	ical Connectives We will always giv you this list!
Identity	Associative
$- p \wedge T \equiv p$	$-(p \lor q) \lor r \equiv p \lor (q \lor r)$
$- p \lor F \equiv p$	$-(p \land q) \land r \equiv p \land (q \land r)$
Domination	Distributive
$- p \lor T \equiv T$	$- p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
$- p \wedge F \equiv F$	$- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Idempotent	Absorption
$- p \lor p \equiv p$	$- p \lor (p \land q) \equiv p$
$- p \land p \equiv p$	$- p \land (p \lor q) \equiv p$
Commutative	Negation
$- p \lor q \equiv q \lor p$	$- p \lor \neg p \equiv T$
$- p \land q \equiv q \land p$	$-p \land \neg p \equiv F$

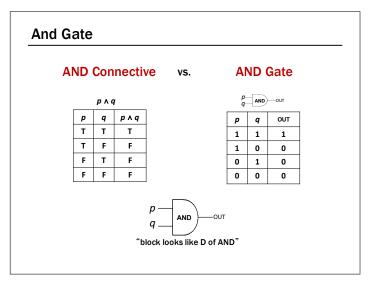
Digital Circuits

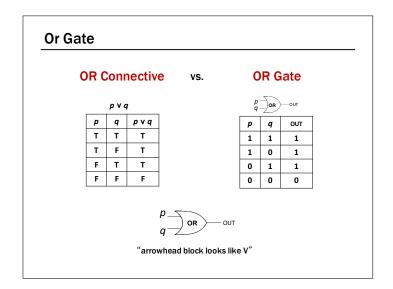
Computing With Logic

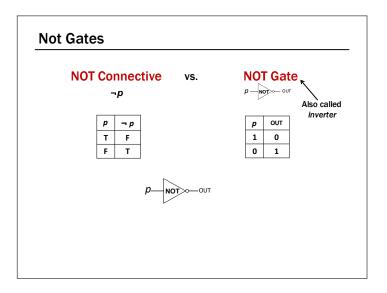
- T corresponds to 1 or "high" voltage
- F corresponds to 0 or "low" voltage

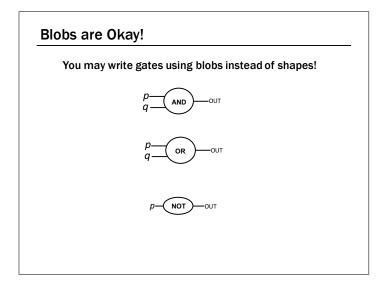
Gates

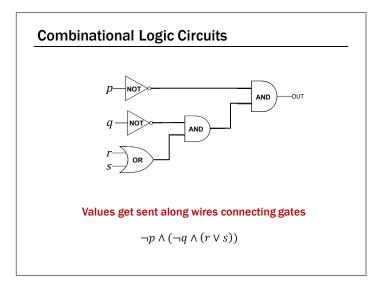
- Take inputs and produce outputs (functions)
- Several kinds of gates
- Correspond to propositional connectives (most of them)

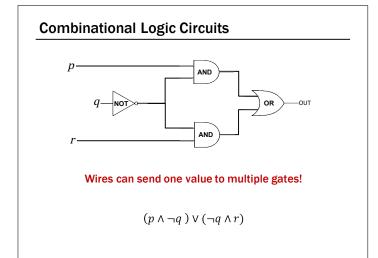


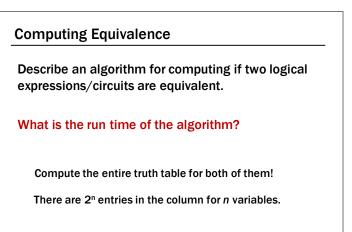












Some Familiar Properties of Arithmetic					
• $x + y = y + x$	(Commutativity)				
• $x \cdot (y+z) = x \cdot y + x \cdot z$	(Distributivity)				
• $(x + y) + z = x + (y + z)$	(Associativity)				

Understanding Connectives

- Reflect basic rules of reasoning and logic
- Allow manipulation of logical formulas
 - Simplification
 - Testing for equivalence
- Applications
 - Query optimization
 - Search optimization and caching
 - Artificial Intelligence
 - Program verification