Adam Blank Spring 2016

Foundations of
Computing |

Boy It's Hot In Here!

* Yep. The room doesn’t have enough seats.
* Yep. The room is boiling hot.
* | tried to get a new room. There wasn’t one ®

Collaboration Policy

* There are two types of HW questions:

— Written:

You may work with other students, but you must write your
work up individually.

— Online:

You may not discuss these with anyone other than course
staff! You will have multiple attempts though!

p—4q

(1) “I have collected all 151 Pokémon if | am a Pokémon master”
(2) “I have collected all 151 Pokémon only if | am a Pokémon master”

These sentences are opposites of each other:
(1) “Pokémon masters have all 151 Pokémon”
(2) “People who have 151 Pokémon are Pokémon masters”

So, the implications are:
(1) If 1 am a Pokémon master, then | have collected all 151 Pokémon.
(2) If I have collected all 151 Pokémon, then | am a Pokémon master.

p—(q

Implication: N
— p implies q T|F F
— whenever p is true g must be true E 1 I
—if pthenq
—qifp
— p is sufficient for q
—ponlyifq

A Note On Formality

Console.WriteLine ("Hello World!");
vs.
System.out.println("Hello World!");

It’s clear what both of these mean, but the Java compiler
will only accept one and the C# compiler will accept the
other. Neitherone of them is WRONG, it’s just a context
change.

Why are we talking about this? We’re dealing with a
formal language here:

p—=>qVvs.p =4
Our formal language uses the former.

You may not use the latter.

Biconditional: p © q

* piffq

* pis equivalent to q
* p implies g and q implies p

p 9 | pP=4g
T T T
T F F
F T F
F F T

Converse, Contrapositive, Inverse

Implication: Contrapositive:
p—q -q—>-p
Converse: Inverse:
q—=p —p—=>—q

How do these relate to each other?

Divisible By 2 Not Divisible By 2
Consider
p: X is divisible by 2 Divisible By 4 4 Nothing Here!
g: x is divisible by 4
Not Divisible By 4 2 3

Converse, Contrapositive, Inverse

Implication:

p—=q
Converse:

qa—=p
Consider

p: x is divisible by 2
q: x is divisible by 4

p—>q
q—p

-q—-p

-p—>-q

—|n ||

Back to Roger’s Sentence

Contrapositive:
-q—>-p
Inverse:
-p—=-q
Divisible By 2 Not Divisible By 2
Divisible By 4 4 Nothing Here!
Not Divisible By 4 2 3

An implication and it's contrapositive
have the same truth value!

“Roger is an orange elephant who has toenails if he
has tusks, and has toenails, tusks, or both.”

l

RElephant A (RToenailsifRTusks) A (RToenailsV RTusksV (RToenails A RTusks))

Define shorthand ...
p: RElephant
q : RTusks
r : RToenails

A@->7r)A(TVgV (@A)

Roger’s Sentence with a Truth Table

q|r|q—=7 |pA(@—=T) (TVg [TAQ | (rVOV(rAgQ) [PA(Q@—= ATV @V (TrAQ)
T(T| T T T T T T
TIF| F F T F T F
FlT| T T T F T T
FIFl T T F F F F
T(T| T F T T T F
TIF| F F T F T F
FlT| T F T F T F
FIF[T F F F F F

CSE 311: Foundations of Computing

Lecture 2: Logical Equivalence & Digital Circuits

’ 5 & I I
CONJUNCTION JUNCTION, | | HOOKING UP WORDS AND
WHAT'S YOUR FUNCTION? | | PHRASES AND CLAUSES!

s
) {a
il

A CoN-
DADDY, JUNCTION?
WHAT'S A \
CONJUNCTION?

N NORMAL
LANGUAGE,

Tautologies!

Terminology: A compound propositionis a...
— Tautologyif it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

pv-p
This is a tautology. It's called the “law of the excluded middle.
If p is true, then p v =pis true. If p is false, then p v =p is true.

pO®p
This is a contradiction. It's always false no matter what truth
value p takes on.

(P—=q)ap
This is a contingency. When p=T, q=T, (T — T)AT is true.
When p=T, q=F, (T — F)AT is false.

Logical Equivalence

A =B means A and B are identical “strings”:

—pPAG=pArq
These are equal, because they are character-for-character identical.

—pPAQG=QAP
These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A = B means A and B have identical truth values:

—PAQ=pArq
Two formulas that are equal also are equivalent.

- pAg=qAp
These two formulas have the same truth table!

- pAgzqVp
When p=T and q=F: TAF is false, but FvT is true!

A< B vs. A=B

A = B is an assertion over all possible truth values
that A and B always have the same truth values.

A < B is a proposition which depends on hat may be

true or false depending on the truth values of the
variables in A and B.

A =B and (A <= B) = T have the same meaning.

De Morgan’s Laws

-(pAQ)=-pv-q
-(pvag)=-paAr-q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement
false”.

It's false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.

De Morgan’s Laws

Example: =(p A qg)=(-p Vv —q)

De Morgan’s Laws

-p| -q | ~pv-q | prq| =(prq) | ~(pAg)<>(-pV -q)

IS
R I Y

—la|n|m
—lm|a]m
|
|4
—|A|=|m
— A==

-(pArQg)=-pv -q
-(pvQg)=-paAr-q

if (!(front != null && value > front.data))
front = new ListNode(value, front);

else {
ListNode current = front;
while (current.next != null & current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);

De Morgan’s Laws

I'(front != null & value > front.data)

front == null || value <= front.data

You've been using these for a while!

Law of Implication

p—=q=—-pvg
plqg|p—>q| -p |-pvg p—>q< -pvq
T T T F T T
T|F| F F F T
F T T T T T
F F T T T T

Some Equivalences Related to Implication

p—q = -pvq

p—q = -q—-p
p<q = (p—=a)r(@—=p)
p<gq = -p<-q

We will always give

Properties of Logical Connectives you this list!

Digital Circuits

Computing With Logic
—T corresponds to 1 or “high” voltage
—F corresponds to O or “low” voltage

Gates
— Take inputs and produce outputs (functions)
— Several kinds of gates

— Correspond to propositional connectives (most
of them)

* Identity * Associative
- pAT=p - (vevr=pv(gVvr)
-pVF=p - A AT=pA(GAT)
* Domination * Distributive
-pVT=T -pA@@Vr)=(@AQV(pAT)
— pAF=F -pVv@Ar)=(@V@A(pVT)
* ldempotent e Absorption
- pVp=Ep -pvpAg@=p
- PAP=D -pA(PVQ=p
* Commutative * Negation
- pvVg=qVyp —pV-p=T
- DPAQ=qAp —pA-p=F
And Gate
AND Connective vs. AND Gate
P q | PAG 1] q out
T|T T 1|1 1
T F F 1 0 0
F T F 0 1 0
F F F 0 0 0

p
outT
q

“block looks like D of AND”

Or Gate

OR Connective vs. OR Gate
pva gam
P q | pPve] q out
T T T 1 1 1
T F T 1 0 1
F T T 0 1 1
F F F 0 0 0

“arrowhead block looks like V”

Not Gates
NOT Connective vs. NOT Gate
-p pom \
Also called
inverter
-p p | our
| T F 1 0
F T 0 1

pour

Blobs are Okay!

You may write gates using blobs instead of shapes!

Combinational Logic Circuits

p*
AND ouT
1)
r
s
Values get sent along wires connecting gates

“pA(=gA(rVs))

Combinational Logic Circuits

p

B D

Wires can send one value to multiple gates!

(PA=q)V(mgAT)

Computing Equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!

There are 2" entries in the column for n variables.

Some Familiar Properties of Arithmetic Understanding Connectives

cx+y=y+x (Commutativity) * Reflect basic rules of reasoning and logic
* Allow manipulation of logical formulas

— Simplification

— Testing for equivalence

ex-(y+2z)=x-y+x-z (Distributivity) . Applications

— Query optimization

— Search optimization and caching

— Atrtificial Intelligence

— Program verification

s (x+y)+z=x+(y+2) (Associativity)

