
Foundations of
Computing I

CSE311

Adam Blank Spring 2016
Boy It’s Hot In Here!

• Yep. The room doesn’t have enough seats.
• Yep. The room is boiling hot.
• I tried to get a new room. There wasn’t one !

Collaboration Policy

• There are two types of HW questions:

– Written:
Youmaywork$with$other$students,$butyoumust$write$your$
workupindividually.$

– Online:
Youmaynot$discuss$these$with$anyone$other$than$course$
staff! You$will$have$multiple$attempts$though!

!" → "$

(1) “I have collected all 151 Pokémon if I am a Pokémon master”
(2) “I have collected all 151 Pokémon only if I am a Pokémon master”

These sentences are opposites of each other:
(1) “Pokémon masters have all 151 Pokémon”
(2) “People who have 151 Pokémon are Pokémon masters”

So, the implications are:
(1) If I am a Pokémon master, then I have collected all 151 Pokémon.
(2) If I have collected all 151 Pokémon, then I am a Pokémon master.

!" → "$

Implication:
– p implies q
– whenever p is true q must be true
– if p then q
– q if p
– p is sufficient for q
– p only if q

p q p → q
T T T

T F F

F T T

F F T

A Note On Formality
Console.WriteLine("Hello World!");

vs.
System.out.println("Hello World!");

It’s clear what both of these mean, but the Java compiler
will only accept one and the C# compiler will accept the
other. Neither one of them is WRONG, it’s just a context
change.

Why are we talking about this? We’re dealing with a
formal language here:

!" → "$""vs. !" ⇒ "$
Our formal language uses the former.

You may not use the latter.

Biconditional: !" ↔ "$

• p iff q
• p is equivalent to q
• p implies q and q implies p

p q p"↔ q
T T T
T F F
F T F
F F T

Converse, Contrapositive, Inverse

Implication:
p→ q

Converse:
q→ p

Consider
p: x is divisible by 2
q: x is divisible by 4

Divisible$By 2 Not$Divisible By$2

Divisible$By 4 4 Nothing Here!

Not$Divisible$By$4 2 3

How do these relate to each other?

Contrapositive:
¬q→ ¬p

Inverse:
¬p→ ¬q

Converse, Contrapositive, Inverse

Implication:
p → q

Converse:
q → p

Consider
p: x is divisible by 2
q: x is divisible by 4

Divisible$By 2 Not$Divisible By$2

Divisible$By 4 4 Nothing Here!

Not$Divisible$By$4 2 3

Contrapositive:
¬q → ¬p

Inverse:
¬p → ¬q

p→ q F

q→ p T

¬q→ ¬p F

¬p→ ¬q T

An implication and it’s contrapositive
have the same truth value!

Back to Roger’s Sentence

Define shorthand …
p : RElephant
q : RTusks
r"": RToenails

“Roger is an orange elephant who has toenails if he
has tusks, and has toenails, tusks, or both.”

RElephant"∧"(RToenails ifRTusks)"∧"(RToenails∨"RTusks∨"(RToenails "∧"RTusks))

Roger’s Sentence with a Truth Table

, - . -⟶ . ,∧ (- ⟶ .) . ∨ - . ∧ - (. ∨ -) ∨ (. ∧ -) , ∧ (- ⟶ .) ∧ (. ∨ -) ∨ (. ∧ -)

T T T T T T T T T

T T F F F T F T F

T F T T T T F T T

T F F T T F F F F

F T T T F T T T F

F T F F F T F T F

F F T T F T F T F

F F F T F F F F F

CSE 311: Foundations of Computing
Lecture 2: Logical Equivalence & Digital Circuits

Tautologies!
Terminology: A compound proposition is a…
– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false
p ∨ ¬p

p"⊕ p

(p→ q)%∧ p

This is a tautology. It’s called the “law of the excluded middle.
If p is true, then p#∨ ¬p is true. If p is false, then p#∨ ¬p is true.

This is a contradiction. It’s always false no matter what truth
value p takes on.

This is a contingency. When p=T, q=T, (T$→ T)∧T is true.
When p=T, q=F, (T$→ F)∧T is false.

Logical Equivalence

A = B means A and B are identical “strings”:
– p ∧ q = p ∧ q

– p ∧ q ≠ q ∧ p

A ≡ B means A and B have identical truth values:
– p ∧ q ≡ p ∧ q

– p ∧ q ≡ q ∧ p

– p ∧ q ≢ q ∨ p

These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

Two formulas that are equal also are equivalent.

These two formulas have the same truth table!

When p=T and q=F: T∧F$is false, but F∨T$is true!

A ↔ B vs. A ≡ B

A ≡ B is an assertion over all possible truth values
that A and B always have the same truth values.

A ↔ B is a proposition which depends on hat may be
true or false depending on the truth values of the
variables in A and B.

A ≡ B and (A ↔ B) ≡ T have the same meaning.

De Morgan’s Laws

¬(p%∧ q)%≡ ¬p%∨ ¬q
¬(p%∨ q)%≡ ¬p%∧ ¬q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement
false”.

It’s false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.

De Morgan’s Laws

p q ¬p ¬q ¬p#∨ ¬q p#∧ q ¬(p#∧ q) ¬(p#∧ q)↔ (¬p#∨¬q)
T T F F F T F T

T F F T T F T T

F T T F T F T T

F F T T T F T T

Example:$¬(p ∧ q)$≡ (¬p ∨¬q)

De Morgan’s Laws

¬(p%∧ q)%≡ ¬p%∨ ¬q
¬(p%∨ q)%≡ ¬p%∧ ¬q

if#(!(front&!=&null&&&&value&>&front.data))
front#=#new#ListNode(value,#front);

else#{
ListNode current#=#front;
while#(current.next !=#null#&&#current.next.data < value))

current#=#current.next;
current.next =#new#ListNode(value,#current.next);

}

De Morgan’s Laws

¬(p%∧ q)%≡ ¬p%∨ ¬q
¬(p%∨ q)%≡ ¬p%∧ ¬q

!(front&!=&null&&&&value&>&front.data)

front&==&null&||&value&<=&front.data

≡

You’ve been using these for a while!

Law of Implication

p q p#→ q ¬p ¬p#∨ q p#→ q#↔ ¬p#∨ q
T T T F T T

T F F F F T

F T T T T T

F F T T T T

p#→ q ≡ ¬p ∨ q

Some Equivalences Related to Implication

p%→ q% ≡ ¬p%∨ q
p%→ q% ≡ ¬q%→ ¬p
p%↔ q% ≡ (p→ q)%∧ (q%→ p)
p%↔ q% ≡ ¬p%↔ ¬q

Properties of Logical Connectives We will always give
you this list!

Digital Circuits

Computing With Logic
– T corresponds to 1 or �high� voltage
– F corresponds to 0 or �low� voltage

Gates
– Take inputs and produce outputs (functions)
– Several kinds of gates
– Correspond to propositional connectives (most

of them)

And Gate

p q p#∧ q
T T T
T F F
F T F
F F F

p q OUT

1 1 1
1 0 0
0 1 0
0 0 0

AND Connective AND Gate

q
p

OUTAND

�block looks like D of AND�

p OUTANDqp#∧ q

vs.

Or Gate

p q p#∨ q
T T T
T F T
F T T
F F F

p q OUT

1 1 1
1 0 1
0 1 1
0 0 0

OR Connective OR Gate

p OUTORqp#∨ q

vs.

p
q

OR

�arrowhead block looks like V�

OUT

Not Gates

¬p
NOT Gate

p ¬ p
T F
F T

p OUT

1 0
0 1

vs.NOT Connective

Also called
inverter

p OUTNOT

p OUTNOT

Blobs are Okay!

p OUTNOT

p
q OUTAND

p
q OUTOR

You may write gates using blobs instead of shapes!

Combinational Logic Circuits

Values get sent along wires connecting gates

NOT

OR

AND

AND

NOT

p

q

r
s

OUT

Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT

! ∧ ¬$" ∨ (¬$ ∧ 5)

Computing Equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!

There are 2n entries in the column for n variables.

Some Familiar Properties of Arithmetic

• 6 + 8 = 8 + 6 (Commutativity)
– ! ∨ $ ≡ $ ∨ !
– ! ∧ $ ≡ $ ∧ !

• 6 ⋅ 8 + < = 6 ⋅ 8 + 6 ⋅ < (Distributivity)
– ! ∧ $ ∨ 5 ≡ ! ∧ $ ∨ (! ∧ 5)
– ! ∨ $ ∧ 5 ≡ ! ∨ $ ∧ (! ∨ 5)

• 6 + 8 + < = 6 + (8 + <) (Associativity)
– ! ∨ $ ∨ 5 ≡ ! ∨ $ ∨ 5
– ! ∧ $ ∧ 5 ≡ ! ∧ ($ ∧ 5)

Understanding Connectives

• Reflect basic rules of reasoning and logic
• Allow manipulation of logical formulas
– Simplification
– Testing for equivalence

• Applications
– Query optimization
– Search optimization and caching
– Artificial Intelligence
– Program verification

