Adam Blank Spring 2016

\

G

Foundations of
Computing |

Boy It’s Hot In Here!

* Yep. The room doesn’t have enough seats.
* Yep. The room is boiling hot.
* | tried to get a new room. There wasn’t one ®

Collaboration Policy

* There are two types of HW questions:

— Written:

You may work with other students, but you must write your
work up individually.

— Online:

You may not discuss these with anyone other than course
staff! You will have multiple attempts though!

1 Pokémo

n master”

am a Pokémon master”

P — (q

(1) “I have collected all 151 Pokémon if | am a Pokémon master”
(2) “I have collected all 151 Pokémon only if | am a Pokémon master”

These sentences are opposites of each other:
(1) “Pokémon masters have all 151 Pokémon”
(2) “People who have 151 Pokémon are Pokémon masters”

So, the implications are:
(1)
(2)

P — (q

(1) “I have collected all 151 Pokémon if | am a Pokémon master”
(2) “I have collected all 151 Pokémon only if | am a Pokémon master”

These sentences are opposites of each other:
(1) “Pokémon masters have all 151 Pokémon”
(2) “People who have 151 Pokémon are Pokémon masters”

So, the implications are:
(1) If | am a Pokémon master, then | have collected all 151 Pokémon.
(2) If | have collected all 151 Pokémon, then | am a Pokémon master.

P — (q

Implication:
— p implies q
— whenever p is true g must be true
—if pthengq
—qifp
— p is sufficient for q
—ponlyifq

Ul

n|H|m|4|a

—A|=|(m|4]|]

A Note On Formality

Console.WritelLine ("Hello World!");
VS.
System.out.println ("Hello World!");

A Note On Formality

/4_—7 Console.WriteLine ("Hello World!");
VS.
System.out.println ("Hello World!");

It's clear what both of these mean, but the Java compiler

will only accept one and the C# compiler will accept the
other. Neither one of the it’sjust a context
change.

Why are we talking about this? We’re dealing with a
formal language here:

Our formal language uses the former.

You may not use the latter.

Biconditional: p & ¢q

e piffqg
* pis equivalent to q
 pimplies q and q implies p

P < U

WD |

q
1
r
17

c

1 T)‘ﬁ\c-—\hz

Biconditional: p & ¢q

e piffqg
* pis equivalent to q
 pimplies q and q implies p

mm - |- |S
M- 7| [Q
S (m|m|=]|]

Converse, Contrapositive, Inverse

Implication: Contrapositive:
P—q —-q— P
Converse: Inverse:
q—=p P ——-q

How do these relate to each other?

Divisible By 2 Not Divisible By 2

Consider X
F X is divisi 2 Divisible By 4 L.,(

q: x is divisible by
Not Divisible By 4 & 3

Converse, Contrapositive, Inverse

Implication: Contrapositive:
pP—q -q—~p
Converse: Inverse:
q—p —p—=~q

How do these relate to each other?

Divisible By 2 Not Divisible By 2

Consider
p: x is divisible by 2

Divisible By 4 4 Nothing Here!

q: X is divisible by 4
Not Divisible By 4 2 3

Converse, Contrapositive, Inverse

Implication: Contrapositive:
Converse: Inverse:
T~
Divisible By 2 | Not.Divisible By 2

Divisible By 4

4

VA
Nothing Here!

Not Divisible By 4

D

w

Converse, Contrapositive, Inverse

Converse: Inverse:

- Divisible By-2="| Not Divisible By 2
Consider
p: x is divisible by 2 Divisible By 4 4 Nothing Here!
q: x is divisible by 4
Not Divisible By 4 2 3

p—q F

q—p T : L. . -

0—-p| F An implication and it's contrapositive

P T have the same truth value!

Back to Roger’s Sentence

“Roger is an orange elephant who has toenails if he
has tusks, and has toenails, tusks, or both.”

l

RElephant /\\FRToenaiI@Tusks) A (RToenailsV RTusks V (RToenails A RTusks))
——

Define shorthand ...
p : RElephant
q : RTusks
r : RToenails

Back to Roger’s Sentence

“Roger is an orange elephant who has toenails if he
has tusks, and has toenails, tusks, or both.”

l

RElephant A (RToenailsifRTusks) A (RToenailsV RTusksV (RToenails A RTusks))

Define shorthand ...
p : RElephant
q : RTusks
r : RToenails

(pA(@->1)A(TVqV(rAqg))

Roger’s Sentence with a Truth Table

q—rT

pA(q—T)

rvq

rAq

(rvq)Vv(raq)

PA(Q—Tr)A(rVqV(rAq)

q
T
il

r

‘f

N R R R R

BT

r
i
12

=

-, /)*\/\5/\—w\ allh

Roger’s Sentence with a Truth Table

q|r|q—r |pA@q—T1) (Vg (TAq | (rVq)V(rAq) [pA(@—=T)ATVQV(rAq)
TI|T T T T T T T
T|F F F T F T F
FIT T T T F T T
F|F T T F F F F
TI|T T F T T T F
T|F F F T F T F
FIT T F T F T F
F|F T F F F F F

CSE 311.: Foundations of Computing

Lecture 2: Logical Equivalence & Digital Circuits

A CON-) g e 5 3
DADDY, JUNCTION? CONTJUNCTION JUNCTION, HOOKING UP WORDS AND
" WHAT'S YOUR FUNCTION? MASES AND CLAUSES!

4*iz

Tautologies!

Terminology: A compound propositionis a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

®v o)
Py
Po = /

@i

(P—=Qq)Ap

Tautologies!

Terminology: A compound propositionis a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

pv-p
This is a tautology. It's called the “law of the excluded middle.
If p is true, then p v =pis true. If p is false, then p v =p is true.

pep
This is a contradiction. It's always false no matter what truth
value p takes on.

(P—=q)Ap
This is a contingency. When p=T, q=T, (T — T)AT is true.
When p=T, q=F, (T — F)AT is false.

Logical Equivalence

A = B means A and B are identical “strings”:
- PAQG=pAQ

— PAQG=QAD
—\\

Logical Equivalence

A = B means A and B are identical “strings”:

—PAg=pPpACq
These are equal, because they are character-for-character identical.

— PAG=qAP
These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A means A and B have identical truth values:

Logical Equivalence

A = B means A and B are identical “strings”:

—PAg=pPpACq
These are equal, because they are character-for-character identical.

— PAG=qAP
These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A = B means A and B have identical truth values:

— PAG=EPAQ
Two formulas that are equal also are equivalent.

— PAG=q AP
These two formulas have the same truth table!

— PAQEQVP
When p=T and g=F: TAF is false, but FvT is true!

A< B vs. A=B

@ an assertion over all possible truth values

at A and B always have the same truth values.

@ a proposition which depends on hat may be
alse depending on the truth values of the
variables in A and B.

A =B and (A <= B) = T have the same meaning.

De Morgan’s Laws

-(pAQ)=-pvVv —¢

@P va)¥-pA-g
° ’\

Negate the st +-
“My_code comyiles or there is a bug.

To negate the statemjt ask “when is the originakstatement

false”.) ﬂ Mé) ()

De Morgan’s Laws

~(pAQ)=-pV —q ST

Negate the statement:
“My code compiles or there is a

(va)=-par-q \IF
" @A)
bug.”

To negate the statement, ask “when is the original statement
false”.

It's false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is nota bug.

De Morgan’s Laws

\

— J

v
Exan@/\ g)=(-pv —q)

plgq|-p| —~q | =-pv-q | prq| ~(pAq) ﬂ(pAq)e\(ﬂpvﬂq)\
|1 F| ¥)~ T =

TIF| P | ¢ T ¥ g

FIT| = 3 v r

Flr| Y | © T v T J

De Morgan’s Laws

Example: =(p A g)=(—-p Vv —q)

-p| —=q | ~pv-q | pAq| —~(pAq) | =(pAQ)<>(-pV—q)

MM H]H|S
M| | 4|
—A | |[m|m
e B e o T e I B
— ||
'I'I'I'I'I'I—|>
—A |||
— |||

De Morgan’s Laws

-(pAQ)=-pVv —Q
-(pvQq)=-pA-Qq

if (!(front != null & value > front.data))
front = new ListNode(value, front);

else {
ListNode current = front;
while (current.next != null && current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);

De Morgan’s Laws

-(pAQ)=-pVv —Q
-(pvQq)=-pA-Qq

I(front != null && value > front.data)

front == null || value <= front.data

You’ve been using these for a while!

Law of Implication

vo

L

pla|p—>aql| -p -p Vg p—>q<f -pvgq
o (’T) T T F /,,MX
T ID |7 F /
o T | T 17 T
Fl -1 + T

/‘< /\’\c\?'—’ ’\\’\/7
—Qrvy

Law of Implication

p—=>qg=-pvg

-pvgq

pP—=q<> —~pVvq

T

nm|Mm |44

M| || 4|R

— ==

|||

|||

T
T
T

Some Equivalences Related to Implication

p—d = -pvg

p—d = -q—-p

p<q = (p—qg)r(gq—p)
p<gd = -p<-q

We will always give

Properties of Logical Connectives you this list!

Identity * Associative

- pAT=p - (pvg@Vvr=pv(gVvr)

- pVF=p —(PAQAT=pA(QAT)
Domination * Distributive

- pVT=T —-pA@Vr)=(@AqQV(pAT)
- pAF=F —-pVv@Ar) =@V Ar(Vr)
Idempotent * Absorption

—pVDP=Dp -pV(@AQ =D

—pApP=ED -pA(PVQ =Dp
Commutative Negation

—pVqg=qVp —pVap=T

—DAG=qAD —pAp=F

Digital Circuits

Computing With Logic
— T corresponds to 1 or “high” voltage
—F corresponds to O or “low” voltage

Gates
— Take inputs and produce outputs (functions)
— Several kinds of gates

— Correspond to propositional connectives (most
of them)

And Gate

AND Connective vs. AND Gate
PAQ g:AND ouT
p q | PAQ p q ouT
T T T 1 1 1
T F F 1 0 0
F T F 0 1 0
F F F 0 0 0
p [—

AND ouT

q —
“block looks like D of AND”

Or Gate

OR Connective VS. OR Gate
PV b Jor)—ou
p q vq p q ouT
T T T 1 1 1
T F T 1 0 1
F T T 0 1 1
F F F 0 0 0

“arrowhead block looks like V”

Not Gates

NOT Connective VS. NOT Gate
-p p out \
Also called
inverter
p -p p ouT
T F 1 0
T 0 1

P—NOT ouT

Blobs are Okay!

You may write gates using blobs instead of shapes!

q
q

pOUT

Combinational Logic Circuits

0 pP—NoT] b T O

AND

Values get sent along wires connecting gates
(A A Q\W ﬂ N () \,(5‘»

Combinational Logic Circuits

p—jua [y -
q
(oo

Values get sent along wires connecting gates

pA(2g A (rVs))

Combinational Logic Circuits

P

4— oo

AND

AND

Wires can send one value to multiple gates!

Combinational Logic Circuits

P

4— oo

AND

AND

Wires can send one value to multiple gates!

(PA=q)V(mgAT)

Computing Equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!

There are 2" entries in the column for n variables.

Some Familiar Properties of Arithmetic

*xX+y=y+x (Commutativity)

e x-(y+z)=x-y+x-z (Distributivity)

s (x+y)+z=x+(y+2z) (Associativity)

Understanding Connectives

* Reflect basic rules of reasoning and logic
 Allow manipulation of logical formulas

— Simplification

— Testing for equivalence
* Applications

— Query optimization

— Search optimization and caching

— Artificial Intelligence

— Program verification

