ÇFF

Foundations of

 Computing I* All slides are a combined effort between previous instructors of the course

If you want to use a token on HW1-HW3, you need to sign up for t by 11:30pm tonight.

Midterm practice materials are up on the website.

The midterm will be on Wed, May 4 from 4:30pm - 6:00pm in JHN 102

If you cannot make this time, I need to know by Friday to schedule a make-up exam.

Thero will be two review sessions time/location TBD.

CSE 311: Foundations of Computing

Lecture 14: Induction

Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
- It only applies over the natural numbers
- The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) \{ ... \}
- Show $P(i)$ holds after i times through the loop public int f(int x) \{
if ($x==0$) \{ return 0; \}
else \{ return f(x-1); \}
\}
- $f(x)=x$ for all values of $x \geq 0$ naturally shown by induction.

Prove $\forall(a, b \in \mathbb{Z}) \forall(\dot{\boldsymbol{i}} \in \mathbb{N})\left(a \equiv b(\bmod n) \rightarrow a^{i} \equiv b^{i}(\bmod n)\right.$ Let $a, b \in \mathbb{Z}$ be arbitrary. Let $i \in \mathbb{N}$ be arbitrary. Suppose $a \equiv b(\bmod n)$.

We know $(a \equiv b(\bmod n) \wedge a \equiv b(\bmod n)) \rightarrow a^{2} \equiv b^{2}(\bmod n)$ by multiplying congruences. So, applying this repeatedly, we have:

$$
\begin{aligned}
& \quad(a \equiv b(\bmod \eta) \wedge a \equiv b(\operatorname{mot} x)) \rightarrow a^{2} \equiv b^{2}(\bmod n) \\
& \left(a^{2}=b^{2}(\bmod n) \wedge a \equiv b(\bmod n) \curvearrowright a^{3} \equiv b^{3}(\bmod n)\right. \\
& \left(a^{i-1} \equiv b^{i f}(\bmod) \wedge a \equiv b(\bmod n)\right) \rightarrow a^{i} \equiv 女^{i}(\bmod n)
\end{aligned}
$$

The "..."s/s a problem! We don't have a proof roke that allowsus to say "do this over and over".

So, make one!

Domain: Natural Numbers

Induction Is A Rule of Inference

Domain: Natural Numbers $\int P(0)$
$\left\{\begin{array}{c}\forall k(P(k) \rightarrow P(k+1)) \\ \therefore \forall n P(n)\end{array}\right.$
How does this technique prove $\left.{ }_{p(\mathcal{P}(1)}\right)$?

$$
P(0) \quad M P P(1) \quad p(2) \quad p(3) \quad p(4)
$$

Induction Is A Rule of Inference

Domain: Natural Numbers

$P(0)$
$\forall k(P(k) \rightarrow P(k+1))$

How does this technique prove $\mathbf{P (5)}$?

First, we prove $P(0)$.
Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$.
Since $P(0)$ is true and $P(0) \rightarrow P(1)$, by Modus Ponens, $P(1)$ is true.
Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(1) \rightarrow P(2)$.
Since $P(1)$ is true and $P(1) \rightarrow P(2)$, by Modus Ponens, $P(2)$ is true.

Translating to an English Proof

Inductive

 Hypothesis3.2. ...
3.3. Prove $P(k+1)$ is true Inductive Step
3. $P(k) \rightarrow P(k+1)$

Direct Proof Rule
4. $\forall k(P(k) \rightarrow P(k+1))$
5. $\forall \mathrm{n} \mathrm{P}(\mathrm{n})$ Intro \forall : 2, 3
Induction: 1, 4

Translating To An English Proof

We will show that $P(n)$ is true for every $n \in \mathbb{N}$ by Induction. Base case:

8 a he $P(1)$
IH: Suppose $p(k)$ is the for same $k \in \mathbb{N}$ IS: using 11) pare $p(k+1)$
conchorm

Translating To An English Proof

1. Prove $P(0)$ Base Case	
2. Let k be an arbitrary integer ≥ 0 Inductive 3.1. Assume that $P(k)$ is true Hypothesis	
3.2. ... 3.3. Prove $P(k+1)$ is true	Inductive Step
3. $P(k) \rightarrow P(k+1)$ Proof Rule	Direct
4. $\forall \mathrm{k}(\mathrm{P}(\mathrm{k}) \rightarrow \mathrm{P}(\mathrm{k}+1))$	Intro \forall : 2, 3
5. $\forall \mathrm{nP}(\mathrm{n})$	Inductien- ${ }_{\text {che }}$

Induction Proof Template

[...Define P(n)...]
We will show that $P(n)$ is true for every $n \in \mathbb{N}$ by Induction.
Base Case: [...proof of $P(0)$ here...]
Induction Hypothesis:
Suppose $P(k)$ is true for some $k \in \mathbb{N}$.
Induction Step:
We want to prove that $P(k+1)$ is true.
[...proof of $P(k+1)$ here...]
The proof of $P(k+1)$ must invoke the IH somewhere.
So, the claim is true by induction.

5 Steps To Inductive Proofs In English

Proof:

1. "We will show that $P(n)$ is true for every $n \geq 0$ by Induction."
2. "Base Case:" Prove $P(0)$
3. "Inductive Hypothesis:"

Assume $P(k)$ is true for some arbitrary integer $k \geq 0 "$
4. "Inductive Step:" Want to prove that $P(k+1)$ is true: Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1) !!)
5. "Conclusion: Result follows by induction"

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

- We could try proving it with properties of summations?
(OWe could use calculus?
Could this be induction?
Let $p(n):!=" \sum_{i=0}^{n} 2^{i}=2^{n+1}-1^{n}$
we so by inancsizs on n.
Base $\operatorname{cose}(n=0): \sum_{i=0}^{0} 2^{i}=2^{0}=1=2^{0+1}-1$
Sap $p(0)$ os time.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

- We could try proving it with properties of summations?
- We could use calculus?
- Could this be induction?

Let $P(n)$ be $\sum_{i=0}^{n} 2^{i}=2^{n+1}$. We go by induction on n.
Base Case ($\mathrm{n}=0$):
Note that $2^{0}=1=2-1=2^{0+1}-1$, which is exactly $P(0)$.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

Let $P(n)$ be $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$. We go by induction on n.

Base Case ($\mathrm{n}=0$):

Note that $2^{0}=1=2-1=2^{0+1}-1$, which is exactly $P(0)$.
Induction Hypothesis:
Suppose $\mathrm{P}(k)$ is true for some $\mathrm{k} \in \mathbb{N}$.
Induction Step:
We want to show $\mathrm{P}(k+1)$. That is, we want to show:
$\sum_{i=0}^{k+1} 2^{i}=\begin{gathered}\text { One of these steps } \\ \text { must use the IH. }\end{gathered} \underset{i=1}{\substack{i=0}}$

So, the claim is true for all natural numbers by induction.

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

Let $P(n)$ be $\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$. We go by induction on n.
Base Case ($\mathrm{n}=0$): Note that $2^{0}=1=2-1=2^{0+1}-1$, which is exactly $P(0)$. Induction Hypothesis: Suppose $(\underset{P}{ }(k)$ is true for some $\mathrm{k} \in \mathbb{R}$ Induction Step: We want to show $P(k+1)$. That is, we want to show: $\sum_{i=0}^{k+1} z^{i=}=\sum^{(k+1)+1}-1$

Note that

$$
=2^{k+1}-1+2^{k+1}\left[b y\left[H^{\beta}\right]=\left(\sum_{21}^{k}=2^{k+1}-2\right.\right.
$$

$$
=2^{b+1}+2^{2 r+1}-1
$$

$$
\begin{aligned}
& =2^{+2}-1 \\
& =2\left(2^{k+1}\right)-1(\text { algolra }) \\
& =2^{k+2}-1
\end{aligned}
$$

This is exactly $\mathrm{P}(k+1)$. So, $\mathrm{P}(k) \rightarrow \mathrm{P}(k+1)$.
So, the claim is true for all natural numbers by induction.

We Te trying to get...

$$
\sum_{i=0}^{k+1} 2^{i}=2^{(k+1)+1}-1
$$

Our goal is to find a sub-expression of the left that looks like the left side of the IH .

Prove $1+2+4+\ldots+2^{n}=2^{n+1}-1$

Let $P(n)$ be $\sum_{i=0}^{n} 2^{i}=2^{n+1}-"$. We go by induction on n.
Base Case ($\mathrm{n}=0$): Note that $2^{0}=1=2-1=2^{0+1}-1$, which is exactly $P(0)$. Induction Hypothesis: Suppose $\mathrm{P}(k)$ is true for some $\mathrm{k} \in \mathbb{N}$.
Induction Step: We want to show $\mathrm{P}(k+1)$. That is, we want to show: $\sum_{i=0}^{k+1} z^{i}=2^{(k+1)+1}-1$
Note that $\sum_{i=0}^{k+1} 2^{i}=\left(\sum_{i=0}^{k} 2^{i}\right)+2^{k+1} \quad$ [Splitting the summation]

$$
=\left(2^{k+1}-1\right)+2^{k+1} \quad[\mathrm{By} \mathrm{IH}]
$$

Don't bother justifying
the "obvious" steps. $=\left(2^{k+1}+2^{k+1}\right)-1 \quad$ [Assoc. of +]
But make sure you say
"by IH" somewhere. $=\left(2\left(2^{k+1}\right)\right)-1 \quad$ [Factoring]

$$
=2^{k+2}-1 \quad[\text { Simplifying }]
$$

This is exactly $\mathrm{P}(k+1)$. So, $\mathrm{P}(k) \rightarrow \mathrm{P}(k+1)$.
So, the claim is true for all natural numbers by induction.

We know (by IH)...

$$
\sum_{i=0}^{k} 2^{i}=2^{k+1}-1
$$

We're trying to get...

$$
\sum_{i=0}^{k+1} 2^{i}=2^{(k+1)+1}-1
$$

Our goal is to find a sub-expression of the left that looks like the left side of the IH .

Prove $1+2+3+\ldots+n=n(n+1) / 2$
Let $P(n)$ be $\sum_{i=0}^{n} i=\frac{n(n+1)}{\partial^{2}}$ ". We go by induction on n.
Base Case $(n=0): \quad \sum_{i=0}^{0} i=0=\frac{\partial(0 \Delta)}{2} \quad<2, \rho(0)$ is bur.
Induction Hypothesis: Suppose $p(k)$ is tare k, sone $k f i V$.
Induction Step: he pore $p\left(k_{1}-1\right)$

$$
\begin{aligned}
\sum_{i=0}^{k+1} i & =\left(\sum_{i=0}^{k} i\right)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \quad b b \leq H \\
& =\frac{(k+t)(k+2)}{2}
\end{aligned}
$$

This is exactly $\mathrm{P}(k+1)$. So, $\mathrm{P}(k) \rightarrow \mathrm{P}(k+1)$.
So, the claim is true for all natural numbers by induction.

Prove $1+2+3+\ldots+n=n(n+1) / 2$

Let $P(n)$ be $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$ ". We go by induction on n.
Base Case $(\mathrm{n}=0)$: Note that $\sum_{i=0}^{0} i=0=\frac{0(0+1)}{2}$, which is exactly $P(0)$.
Induction Hypothesis: Suppose $\mathrm{P}(k)$ is true for some $\mathrm{k} \in \mathbb{N}$.
Induction Step: We want to show $\mathrm{P}(k+1)$. That is, we want to show: $\sum_{i=0}^{k+1} i=\frac{(k+1)(k+2)}{2}$
Note that $\sum_{i=0}^{k+1} i=\left(\sum_{i=0}^{k} i\right)+(k+1) \quad$ [Splitting the summation]

$$
\begin{aligned}
& =\left(\frac{k(k+1)}{2}\right)+(k+1) \text { [By IH] } \\
& =(k+1)\left(\frac{k}{2}+1\right)=(k+1)\left(\frac{k+2}{2}\right) \text { [Algebra] } \\
& =\frac{(k+1)(k+2)}{2}[\text { Algebra }]
\end{aligned}
$$

This is exactly $\mathrm{P}(k+1)$. So, $\mathrm{P}(k) \rightarrow \mathrm{P}(k+1)$.
So, the claim is true for all natural numbers by induction.

We know (by IH)...

$$
\sum_{i=0}^{k} i=\frac{k(k+1)}{2}
$$

We're trying to get...

$$
\sum_{i=0}^{k+1} i=\frac{(k+1)(k+2)}{2}
$$

Our goal is to find a sub-expression of the left that looks like the left side of the IH.

Prove $3 \mid 2^{2 n}-1$ for all $n \geq 0$.

Let $P(n)$ be " $3 \mid 2^{2 \mathrm{n}}-1$." We go by induction on n.
Base Case ($\mathrm{n}=0$):

Induction Hypothesis:
Induction Step:

We know (by IH)...
...which means...

We're trying to get..
...which is true if..

