CSE 311: Foundations of Computing I

GCD Annotated Proofs

Relevant Definitions

GCD (Greatest Common Divisor)

The gcd of two integers, a and b, is the largest integer d such that $d \mid a$ and $d \mid b$.

Euclidean Algorithm

```
1 gcd(a, b) {
2     if (b == 0) {
3         return a;
4     }
5     else {
6         return gcd(b, a mod b);
7     }
8 }
```

Useful GCD Identity

Prove that for $a, b \in \mathbb{Z}^+$, $gcd(a, b) = gcd(b, a \mod b)$.

Proof	Commentary & Scratch Work
We show that the factors shared by a and b are identical to the factors shared by b and $a \mod b$.	The idea is to treat the left and right as sets. If the sets are equal, then the largest elements in the sets must also be equal.
Note that, by the division theorem, there is some integer q such that $a \mod b = a - qb$.	Get rid of the mod notation.
Now, define the following:	
• $F_{a,b} = \{d \ : \ (d \mid a) \land (d \mid b)\}$, and	Re-state the claim in terms of sets to make it eas-
• $F_{b,m} = \{d : (d \mid b) \land (d \mid a \mod b)\}$	ier to think about. We'll now prove both subset inclusions.
We show $F_{a,b} = F_{b,m}$.	
Suppose $d \in F_{a,b}$.	We're proving an implication, right?
Then, by definition of $F_{a,b}$, we have $d \mid a$ and $d \mid b$. So, by definition of divides, we have $a = dk_a$ and $b = dk_b$.	Unroll the definition of d .
Note that, as above, $a \mod b = a - qb = dk_a - q(dk_b) = d(k_a - qk_b)$. So, $d \mid a \mod b$ by definition.	Use the definitions of $a \mod b$, a , and d .
Since $d \mid b$ and $d \mid a \mod b$, $d \in F_{b,m}$.	Conclude that $d \in F_{b,m}$.
Now, suppose $d \in F_{b,m}$.	Prove the other implication

DEFINITION

Algorithm

Then, by definition of $F_{b,m}$, we have $d \mid b$ and $d \mid a \mod b$. So, by definition of divides, we have $b = dk_b$ and $a \mod b = dk_m$.	Unroll the definition of d .
Note that $a = a \mod b + qb = dk_m + q(dk_b) = d(k_m + qk_b)$. So, $d \mid a$ by definition.	Use the definitions of $a \mod b$, a , and d .
Since $d \mid a$ and $d \mid b$, $d \in F_{b,m}$.	Conclude that $d \in F_{b,m}$.
It follows that $F_{a,b} = F_{b,m}$. Furthermore, $\max(F_{a,b}) = \max(F_{b,m})$. That is, the <i>largest</i> factor shared between a and b is the same as the <i>largest</i> factor shared between b and $a \mod b$. That's just another way of saying $gcd(a,b) = gcd(a, a \mod b)$.	Use our conclusion to show the conclusion we ac- tually wanted.