GCD Annotated Proofs

Relevant Definitions

GCD (Greatest Common Divisor)

The gcd of two integers, a and b, is the largest integer d such that $d \mid a$ and $d \mid b$.

```
Euclidean Algorithm
gcd(a, b) {
    if (b == 0) {
        return a;
    }
    else {
        return gcd(b, a mod b);
    }
}
```

 Algorithm

Useful GCD Identity

Prove that for $a, b \in \mathbb{Z}^{+}, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$.

Proof

We show that the factors shared by a and b are identical to the factors shared by b and $a \bmod b$.

Note that, by the division theorem, there is some integer q such that $a \bmod b=a-q b$.

Now, define the following:

- $F_{a, b}=\{d:(d \mid a) \wedge(d \mid b)\}$, and
- $F_{b, m}=\{d:(d \mid b) \wedge(d \mid a \bmod b)\}$

We show $F_{a, b}=F_{b, m}$.
Suppose $d \in F_{a, b}$.
Then, by definition of $F_{a, b}$, we have $d \mid a$ and $d \mid b$. So, by definition of divides, we have $a=d k_{a}$ and $b=d k_{b}$.

Note that, as above, $a \bmod b=a-q b=$ $d k_{a}-q\left(d k_{b}\right)=d\left(k_{a}-q k_{b}\right)$. So, $d \mid a \bmod b$ by definition.

Since $d \mid b$ and $d \mid a \bmod b, d \in F_{b, m}$.
Now, suppose $d \in F_{b, m}$.

Commentary \& Scratch Work
The idea is to treat the left and right as sets. If the sets are equal, then the largest elements in the sets must also be equal.

Get rid of the mod notation.

Re-state the claim in terms of sets to make it easier to think about. We'll now prove both subset inclusions.

We're proving an implication, right?

Unroll the definition of d.

Use the definitions of $a \bmod b, a$, and d.

Conclude that $d \in F_{b, m}$.
Prove the other implication...

Then, by definition of $F_{b, m}$, we have $d \mid b$ and $d \mid a \bmod b$. So, by definition of divides, we have $b=d k_{b}$ and $a \bmod b=d k_{m}$.

Note that $a=a \bmod b+q b=d k_{m}+$ $q\left(d k_{b}\right)=d\left(k_{m}+q k_{b}\right)$. So, $d \mid a$ by definition.

Since $d \mid a$ and $d \mid b, d \in F_{b, m}$.
It follows that $F_{a, b}=F_{b, m}$. Furthermore, $\max \left(F_{a, b}\right)=\max \left(F_{b, m}\right)$. That is, the largest factor shared between a and b is the same as the largest factor shared between b and $a \bmod b$. That's just another way of saying $\operatorname{gcd}(a, b)=$ $\operatorname{gcd}(a, a \bmod b)$.

Unroll the definition of d.

Use the definitions of $a \bmod b, a$, and d.

Conclude that $d \in F_{b, m}$.

Use our conclusion to show the conclusion we actually wanted.

