
Foundations of
Computing I

CSE311

Adam Blank Spring 2016

* All slides are a combined effort between
previous instructors of the course

Building Precedence in Arithmetic Expressions

• E – expression**(start*symbol)
• T – term***F – factor***I – identifier**N 6 number

E → T |*E+T
T& → F |*F∗T
F& → (E) |*I |*N
I& → x*|*y*|*z
N& → 0*|*1*|*2*|*3*|*4*|*5*|*6*|*7*|*8*|*9

Backus-Naur Form (The same thing…)

BNF (Backus-Naur Form) grammars
– Originally used to define programming

languages
– Variables denoted by long names in angle

brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
∷= used instead of →

BNF for C

Parse Trees

Back to middle school:
<sentence>∷=<noun phrase><verb phrase>
<noun phrase>∷==<article><adjective><noun>
<verb phrase>∷=<verb><adverb>|<verb><object>
<object>∷=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

CSE 311: Foundations of Computing

Lecture 20: Finite State Machines (DFAs)

A Weird Sort of Programming!

What does this “thing” do?

Take a guess!

If you had to give this “method” a
name, what would it be?

start

zero

one

0

1

1

0

0

1

boolean isEven(binary s)

Finite State Machines (“DFAs”)

start

zero

one

0

1

1

0

0

1

“Start
here”

“If I get X, follow the arrow…”

The circles are called “states”
We’re only in a single state at
any point in time…

The “double circle” means “return
true if the input ends here”

Applications of FSMs (a.k.a. finite automata)

• Implementation of regular expression matching in
programs like grep

• Control structures for sequential logic in digital
circuits

• Algorithms for communication and cache-
coherence protocols
– Each agent runs its own FSM

• Design specifications for reactive systems
– Components are communicating FSMs

Applications of FSMs (a.k.a. finite automata)

• Formal verification of systems
– Is an unsafe state reachable?

• Computer games
– FSMs provide worlds to explore

• Minimization algorithms for FSMs can be
extended to more general models used in
– Text prediction
– Speech recognition

What language does this machine recognize?

CSE 311: Foundations of Computing I

Lecture 21 Exercises

(a) On Your Own

What language does this automaton accept?

q0 q1

q2 q3

1

0

1

0

1

0 0

1

All binary strings with even length

Why is this not a DFA? Fix it!(b) On Your Own

Explain why the following automaton is not a DFA:

q0 q1 q2 q3
w h e

e

Fix it so that it is a DFA.

DFAs must have a transition for every
character at every state!

Why is this not a DFA? Fix it!

“Garbage states” are a useful concept. Whenever we KNOW we
can’t accept the string, just send it to a state that will always go
back to itself. This is the way of saying “return false” in DFA-land.

start

zero

one

0

1

1

0

0

1

q0 q1 q2 q3

qgarbage

w

h, e

h

w, e

e

w, h

e

w, h

w, h, e

For each of the following languages, create a DFA

∅

∑*

start

zero

one

0

1

1

0

0

1

q0 q1 q2 q3

qgarbage

w

h, e

h

w, e

e

w, h

e

w, h

w, h, e
q0

0, 1

q0

0, 1

start

zero

one

0

1

1

0

0

1

q0 q1 q2 q3

qgarbage

w

h, e

h

w, e

e

w, h

e

w, h

w, h, e
q0

0, 1

q0

0, 1

start

zero

one

0

1

1

0

0

1

q0 q1 q2 q3

qgarbage

w

h, e

h

w, e

e

w, h

e

w, h

w, h, e
q0

0, 1

q0

0, 1

q0 q1 q2
0, 1 0, 1

0, 1

{' ∈ 0,1 ∗ ∶ len ' > 1}

FSM that accepts strings of a’s, b’s, c’s with no more than 3 a’s

CSE 311: Foundations of Computing I

Lecture 22 Exercises

q0 q1 q2 q3 q4

b, c

a

b, c

a

b, c

a

b, c

a

a, b, c

q0 q1 q2

q3

q4

0, 1 0, 1

1

0

0, 1

0, 1

q0 q1

2

0, 1

2

0, 1

Strings over {0, 1, 2}*

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

CSE 311: Foundations of Computing I

Lecture 22 Exercises

q0 q1 q2 q3 q4

b, c

a

b, c

a

b, c

a

b, c

a

a, b, c

q0 q1 q2

q3

q4

0, 1 0, 1

1

0

0, 1

0, 1

q0 q1

2

0, 1

2

0, 1

s0

s1

s2

0
1

2

0

1

2

0

1

2

q0, s0

q0, s1

q0, s2

q1, s0

q1, s1

q1, s2

0

1

2
0

1

2

0

1

2

0

1

2 0

1

2

0

1

2

