Adam Blank Spring 2016

Foundations of
Computing |

* All slides are a combined effort between
previous instructors of the course

Building Precedence in Arithmetic Expressions

* E-—expression (start symbol)
e T—term F-factor |- identifier N -number

E —T|E+T
T —F|F+T
F —(E)|II|N
Il —=x|y]|z

N —-0|1]2|3]|4|5]|6|7]8]9

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars

— Originally used to define programming
languages
— Variables denoted by long names in angle
brackets, e.g.
<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>
::= used instead of —

Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb> | <verb><object>
<object>::=<noun phrase>

Parse:

The yellow duck squeaked loudly
The red truck hit a parked car

BNF for C
statement:
((identifier | "case"™ constantfexpression | "default") ":")*
(expression? ";" |
block |
"if" "(" expression ")" statement |
" expression ")" statement "else" statement |
" (" expression ")" statement |
" expression ")" statement |
statement "while" " expression ")" ";"

"for" "(" expression? ";" expression? ";" expression? ")" statement |

"goto" identifier ";
"continue" ";" |
"break" "l
"return" expression? ";"

block: "{" declaration* statement* "}"

expression:
assignment-expression%

assignment-expression: (
unary-expression (
E wom |

| m/=no | mgam | omgmno | omomm | omggmm | omysom | omgon

)* conditional-expression

conditional-expression:

logical-OR-expression ("2" expression ":" conditional-expression)?

CSE 311: Foundations of Computing

Lecture 20: Finite State Machines (DFAs)

A Weird Sort of Programming!

What does this “thing” do?
Take a guess!

If you had to give this “method” a
name, what would it be?

boolean isEven(binary s)

Finite State Machines (“DFAs”")

The “double circle” means “return
true if the input ends here”

“If | get X, follow the arrow...”

- The circles are called “states”
{ We’'re only in a single state at
R ~* any point in time...

Applications of FSMs (a.k.a. finite automata)

* Implementation of regular expression matching in
programs like grep

» Control structures for sequential logic in digital
circuits

* Algorithms for communication and cache-
coherence protocols

— Each agent runs its own FSM
* Design specifications for reactive systems
— Components are communicating FSMs

Applications of FSMs (a.k.a. finite automata)

* Formal verification of systems

— Is an unsafe state reachable?
* Computer games

— FSMs provide worlds to explore

* Minimization algorithms for FSMs can be
extended to more general models used in

— Text prediction
— Speech recognition

What language does this machine recognize?

All binary strings with even length

Why is this not a DFA? Fix it!

DFAs must have a transition for every
character at every state!

Why is this not a DFA? Fix it!

w, h,e

“Garbage states” are a useful concept. Whenever we KNOW we
can’t accept the string, just send it to a state that will always go

back to itself. This is the way of saying “return false” in DFA-land.

For each of the following languages, create a DFA

0] {x € {0,1}* : len(x) > 1}

0,1
0,1

0,1 /‘\ 0,1 O
— —(o q1 q2
@ Q /

FSM that accepts strings of a’s, b’s, ¢’s with no more than 3 a’s

be be be be a,b,c

@ Q a Q a Q a
—(2 a q2 q3 qa

(A v

Strings over {0, 1, 2}*

M,: Strings with an even number of 2's

0,1 0,1

M,: Strings where the sum of digits mod 3 is O

