Adam Blank Spring 2016

Foundations of
Computing |

* All slides are a combined effort between
previous instructors of the course

CSE 311: Foundations of Computing

Lecture 19: Regular Expressions and Context-Free Grammars

O NO! THE KILLER | BUT T0 FIND THEM WED HAVE T0 SEARCH
WHENEVER T TEARV A | | MUST HAVE ROUOUED) | THROUGH 200 B OF EMAILS LOOKING FOR
NEW SKILL T ConcocT | [HER ON VACATION! || SOUETHING FORWATTED LIKE AN ADDRESS!

ELABCRATE. PTRSY |)
iR oS e 1) ~— 175 Horzusss!
LETS I SHETHE DAY, ﬁ

EVERYBODY STAWD 3 T KNOW REGUAR |
T

B Jos
<] K
B ?% 5

Regular Expression Examples

* All binary strings that have an even # of 1's
0*(10*10*)*

* All binary strings that don’t contain 101
0*(1 U 000*)*0*

* LetX ={a, b, e}. Allstrings with no two
consecutive vowels.
b* U (b*(b*(a ue)b)*(a ue)b*)

Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions
* Even some easy things like
— Palindromes
— Strings with equal number of 0’s and 1’s
* But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving
— Afinite set V of variables that can be replaced
— Alphabet X of terminal symbols that can’t be replaced
— One variable, usually S, is called the start symbol

* The rules involving a variable A are written as
A—=wy | wy || w

where each w; is a string of variables and terminals —
thatis w; € (VU X)*

How CFGs generate strings

* Begin with start symbol S

* [f there is some variable A in the current string you
can replace it by one of the w’s in the rules for A

—A=wy | wy || w
— Write thisas xAy = xwy
— Repeat until no variables left

* The set of strings the CFG generates are all strings
producedin this way that have no variables

Context-Free Grammar Example

Context-Free Grammar Example

CFG: S—0S|1S|¢
S = 0S = 00S = 000S = 000E = 000
S = 0S = 01S = 010S = 010E = 010
All binary strings!
Equivalent Regular Expression: (0 U 1)*

Regular Expression: (0 U 1)*1
CFG: S—0S|1S |1

These accept the same sets of strings!

Regular Expressions vs. CFGs

Example Context-Free Grammars

There is no regular expression for palindomes
(with 2={0,1}). (We’ll prove this later.)

Is there a CFG for it?
Yes: S—0S0|1S1|e|1]0

Is there a CFG for every regular expression?
Thereis! We won’t prove this, though.

Find a CFG for {0"1": n 2 0}.

S —0S1]| ¢

What strings does S — (S) | SS | € generate?

Balanced Parentheses!

Simple Arithmetic Expressions

E— E+E|E*E|(E) | x|ylz]|O0]1|2]|3]|4
I51617]18]9

Is there more than one “meaning” of “x+y*z"?
Yes: (x+y)*z, x+(y*z)

Generate it once for each meaning.
ESE+E=>E+E*E=>x+y*z
E=E*E=E+E*E=>x+y*z

Parse Trees

Suppose that grammar G generates a string x
* A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by
symbols of w left-to-right for some rule A —w

— The symbols of x label the leaves ordered left-to-right

S
|
S—>0S0|1S1|0|1]¢ 050
/1N
1S1
Parse tree of 01110 :!.

CFGs and recursively-defined sets of strings

* A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals
that S can generate

* A CFG with more than one variable is a
simultaneous recursive definition of the sets of
strings generated by each of its variables

— Sometimes necessary to use more than one

Building Precedence in Arithmetic Expressions

e E—expression (start symbol)

e T—term F-—factor |- identifier N-number
E — T|E+T
T —F|F+T
F —=(E)[IIN

—xlylz

N —-0|1|2|3|4|5]|6|7|8]9

Backus-Naur Form (The same thing...)

BNF (Backus-Naur Form) grammars
— Originally used to define programming
languages
— Variables denoted by long names in angle
brackets, e.g.

<identifier>, <if-then-else-statement>,
<assignment-statement>, <condition>

::= used instead of —

BNF for C
statement:
((identifier | "case"™ constantfexpression | "default") ":")*
(expression? ";" |
block |
"if" "(" expression ")" statement |
if" xpression ")" statement "else" statement |
switch™ " (" expression ")" statement |
"while"™ " (" expression ")" statement |
"do" statement "while™ " (" expression ")" ";" |
"for" " (" expression? ";" expression? ";" expression? ")" statement |
"goto" identifier ";" |
"continue" "
"break" ";" |

"return" expression? ";"

)
block: "{" declaration* statement* "}"

expression:
assignment-expression%

assignment-expression: (
unary-expression (
WD | mm | mymwo | mgmm | mamm | m_om | mggmm | mysomo | mgom

)* conditional-expression

conditional-expression:
logical-OR-expression ("2" expression ":" conditional-expression)2

Parse Trees

Back to middle school:
<sentence>::=<noun phrase><verb phrase>
<noun phrase>::==<article><adjective><noun>
<verb phrase>::=<verb><adverb> | <verb><object>
<object>::=<noun phrase>

Parse:
The yellow duck squeaked loudly
The red truck hit a parked car

