## **CSE 311: Foundations of Computing**

#### **Lecture 26: Cardinality**

AUTHOR KATHARINE GATES RECENTLY ATTEMPTED TO MAKE A CHART OF ALL SEXUAL FETISHES.

LITTLE DID SHE KNOW THAT RUSSELL AND WHITEHEAD HAD ALREADY FAILED AT THIS SAME TASK.



# **Cardinality and Computability**

# Computers as we know them grew out of a desire to avoid bugs in mathematical reasoning

# A brief history of reasoning

#### **Ancient Greece**

- Deductive logic
  - Euclid's Elements
- Infinite things are a problem
  - Zeno's paradox





# **Starting with Cantor**

- How big is a set?
  - If S is finite, we already defined |S| to be the number of elements in S.
  - What if S is infinite? Are all of these sets the same size?

Natural numbers N

Even natural numbers

Integers **Z** 

Rational numbers **Q** 

Real numbers IR

#### Size!

Two sets A and B have the same when...

# Injectivity, Surjectivity, and Bijectivity

A function f : A→B is **injective** when every element is mapped to by *at most* one input.

A function,  $f : A \rightarrow B$ , is **surjective** when every element is mapped to by *at least* one input.

A function, f : A→B, is **bijective** when every element is mapped to by *exactly* one input.

## **Cardinality**

Two sets A and B have the same size (same cardinality) iff there is a bijection f : A→B.



# **Cardinality**

#### Consider the function $f : \mathbb{N} \to \mathbb{E}$ where f(n) = 2n.

**f(0) f**(1) **f**(2) **f**(3) f(4)**f**(5) 10 **f**(6) 12

Every Natural Number appears on the left

**f**(7)

Every Even Natural Number appears on the right

14

## Countability

A set S is countable iff there is an surjective function  $g: \mathbb{N} \to S$  and S is infinite. Recall, this means that every number in S is mapped to.

A set S is countable iff we can list out the members of S without missing any.

## Integers

Consider the function  $f : \mathbb{N} \to \mathbb{Z}$  where f(n) = ...

f(0)

=

0

**f**(1)

=

-1

**f(2)** 

=

1

f(3)

=

**-2** 

**f**(4)

=

2

f(5)

-3

**f**(6)

3

Every Natural Number appears on the left

Every Integer appears on the right

## **Insight: Programs are Functions!**

If we can write a program that prints out all the numbers in a set (each exactly once), then that set is enumerable!

```
public static void enumerateZ() {
   int positive = 0;
   int negative = -1;
   while (true) {
       System.out.println(positive);
       System.out.println(negative);
       positive++;
       negative--;
   }
}
```

## The set of all integers is countable

```
public static void enumerateZ() {
   int positive = 0;
   int negative = -1;
   while (true) {
       System.out.println(positive);
       System.out.println(negative);
       positive++;
       negative--;
   }
}
```

We need to show that for any integer, x, enumerateZ prints x.

Suppose x is non-negative. The xth iteration through the loop will print x,

because we always print positive and increment it each time.

Suppose x is negative. Then, x = -y for some non-negative y.

The (y-1)st iteration through the loop will print x, because we decrement negative each time.

Since all integers are negative or non-negative, we list all possible integers.

Is the set of positive rational numbers countable?

Between any two rational numbers there are an infinite number of others...

#### The set of positive rational numbers is countable

```
1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ...
2/1 2/2 2/3 2/4 2/5 2/6 2/7 2/8 ...
3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 ...
4/1 4/2 4/3 4/4 4/5 4/6 4/7 4/8 ...
5/1 5/2 5/3 5/4 5/5 5/6 5/7 ...
6/1 6/2 6/3 6/4 6/5 6/6 ...
7/1 7/2 7/3 7/4 7/5 ....
```

#### The set of positive rational numbers is countable

$$\mathbb{Q}^{\dagger} = \{1/1, 2/1,1/2, 3/1,2/2,1/3, 4/1,2/3,3/2,1/4, 5/1,4/2,3/3,2/4,1/5, ...\}$$

#### List elements in order of

- numerator+denominator
- breaking ties according to denominator
   Only k numbers have total of k

Technique is called "dovetailing"

#### The Positive Rationals are Countable: Another Way

```
public static void enumerateQ() {
    for (nat sum=2; ; sum++) {
        for (nat p=1; p < sum; p++) {
            nat q = sum - p;
            System.out.println(new Rational(p, q));
        }
    }
}</pre>
```

We have to show that this function lists all positive rational numbers.

First, note that any positive fraction has a sum that is at least two.

Then, we want to show that for any sum s, the program reaches s. Note that the inner for loop runs for exactly s-1 iterations, which is always finite. So, the program will eventually reach any sum.

Consider r = p/q. Note that the sum for this fraction is p + q. By the above, the program reaches this sum. Furthermore, since 1 , the inner loop prints out <math>p/q.

# Claim: $\Sigma^*$ is countable for every finite $\Sigma$

```
public static void enumerateSigmaStar() {
    for (nat len=0; len < 3; len++) {
        printStringsOfLength(len, "");
public static void printStringsOfLength(nat len, String s) {
    if (len == 0) {
        System.out.println(s);
        return;
    for (char c : Sigma) {
        printStringsOfLength(len - 1, s + c);
```

We must show that every string is printed. First, note that every string has a length. So, if we print out strings of every length, we've printed out all strings. Next, we show that printStringsOfLength(n, s) prints all strings of length n prefixed by s. We go by induction.

BC (n=0): The empty string is the only string of length 0; note that when len is 0, the function prints s; so, it prints s.

IH: Suppose the claim is true for some  $k \ge 0$ .

IS: We know printStringsofLength(k - 1, s + c) prints all strings of length k - 1 prefixed by s + c. Since we loop through all possible values of c, these are the same strings as those of length k, prefixed by s.

If  $\Sigma$  = <all valid characters in java programs>, then the set of Java programs is a subset of  $\Sigma$ \*. Then, the listing for  $\Sigma$ \* from the previous slide prints all Java programs. Thus, the set of all Java programs is countable.

## **Georg Cantor**

- Set theory
- Cardinality
- Continuum hypothesis



Is the set of real numbers countable?

Between any two real numbers there are an infinite number of others...

#### What about the real numbers?

**Q**: Is every set is countable?

A: Theorem [Cantor] The set of real numbers (even just between 0 and 1) is NOT countable

Proof is by contradiction using a new method called diagonalization...

## **Proof by Contradiction**

- Suppose that  $\mathbb{R}^{[0,1)}$  is countable
- Then there is some listing of all elements  $\mathbb{R}^{[0,1)} = \{ r_1, r_2, r_3, r_4, ... \}$
- We will prove that in such a listing there must be at least one missing element which contradicts statement " $\mathbb{R}^{[0,1)}$  is countable"
- The missing element will be found by looking at the decimal expansions of r<sub>1</sub>, r<sub>2</sub>, r<sub>3</sub>, r<sub>4</sub>, ...

#### Real Numbers between 0 and 1: $\mathbb{R}^{[0,1)}$

Every number between 0 and 1 has an infinite decimal expansion:

#### Representations of real numbers as decimals

Representation is unique except for the cases that decimal ends in all 0's or all 9's.

$$9x = 1.8 \text{ so}$$

Won't allow the representations ending in all 9's

All other representations give different elements of  $\mathbb{R}^{[0,1)}$ 

# Supposed listing of $\mathbb{R}^{[0,1)}$

|                |      | 1   | 2    | 3    | 4   | 5   | 6   | 7   | 8   | 9   | ••• |
|----------------|------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|
| $r_1$          | 0.   | 5   | 0    | 0    | 0   | 0   | 0   | 0   | 0   | ••• | ••• |
| $r_2$          | 0.   | 3   | 3    | 3    | 3   | 3   | 3   | 3   | 3   | ••• | ••• |
| r <sub>3</sub> | 0.   | 1   | 4    | 2    | 8   | 5   | 7   | 1   | 4   | ••• | ••• |
| r <sub>4</sub> | 0.   | 1   | 4    | 1    | 5   | 9   | 2   | 6   | 5   | ••• | ••• |
| r <sub>5</sub> | 0.   | 1   | 2    | 1    | 2   | 2   | 1   | 2   | 2   | ••• | ••• |
| r <sub>6</sub> | 0.   | 2   | 5    | 0    | 0   | 0   | 0   | 0   | 0   | ••• | ••• |
| r <sub>7</sub> | 0.   | 7   | 1    | 8    | 2   | 8   | 1   | 8   | 2   | ••• | ••• |
| r <sub>8</sub> | 0.   | 6   | 1    | 8    | 0   | 3   | 3   | 9   | 4   | ••• | ••• |
| •••            | •••• | ••• | •••• | •••• | ••• | ••• | ••• | ••• | ••• | ••• |     |

# Supposed listing of $\mathbb{R}^{[0,1)}$

|                |      | 1   | 2    | 3    | 4   | 5   | 6   | 7   | 8   | 9   | ••• |
|----------------|------|-----|------|------|-----|-----|-----|-----|-----|-----|-----|
| $r_1$          | 0.   | 5   | 0    | 0    | 0   | 0   | 0   | 0   | 0   | ••• | ••• |
| r <sub>2</sub> | 0.   | 3   | 3    | 3    | 3   | 3   | 3   | 3   | 3   | ••• | ••• |
| r <sub>3</sub> | 0.   | 1   | 4    | 2    | 8   | 5   | 7   | 1   | 4   | ••• | ••• |
| r <sub>4</sub> | 0.   | 1   | 4    | 1    | 5   | 9   | 2   | 6   | 5   | ••• | ••• |
| r <sub>5</sub> | 0.   | 1   | 2    | 1    | 2   | 2   | 1   | 2   | 2   | ••• | ••• |
| r <sub>6</sub> | 0.   | 2   | 5    | 0    | 0   | 0   | 0   | 0   | 0   | ••• | ••• |
| r <sub>7</sub> | 0.   | 7   | 1    | 8    | 2   | 8   | 1   | 8   | 2   | ••• | ••• |
| r <sub>8</sub> | 0.   | 6   | 1    | 8    | 0   | 3   | 3   | 9   | 4   | ••• | ••• |
| •••            | •••• | ••• | •••• | •••• | ••• | ••• | ••• | ••• | ••• | ••• |     |

# **Flipped Diagonal**

|                       |      | 1   | 2              | 3              | 4   | Flipping Rule:               |     |                       |     |     |     |  |  |  |  |  |
|-----------------------|------|-----|----------------|----------------|-----|------------------------------|-----|-----------------------|-----|-----|-----|--|--|--|--|--|
| $r_1$                 | 0.   | 5   | 0_             | 0              | 0   | If digit is 5, make it 1     |     |                       |     |     |     |  |  |  |  |  |
| r <sub>2</sub>        | 0.   | 3   | 3 <sup>5</sup> | 3              | 3   | If digit is not 5, make it 5 |     |                       |     |     |     |  |  |  |  |  |
| r <sub>3</sub>        | 0.   | 1   | 4              | 2 <sup>5</sup> | 8   | 5                            | 7   | 1                     | 4   | ••• | ••• |  |  |  |  |  |
| r <sub>4</sub>        | 0.   | 1   | 4              | 1              | 5   | 9                            | 2   | 6                     | 5   | ••• | ••• |  |  |  |  |  |
| r <sub>5</sub>        | 0.   | 1   | 2              | 1              | 2   | 2 <sup>5</sup>               | 1   | 2                     | 2   | ••• | ••• |  |  |  |  |  |
| r <sub>6</sub>        | 0.   | 2   | 5              | 0              | 0   | 0                            | 05  | 0                     | 0   | ••• | ••• |  |  |  |  |  |
| <b>r</b> <sub>7</sub> | 0.   | 7   | 1              | 8              | 2   | 8                            | 1   | <b>8</b> <sup>5</sup> | 2   | ••• | ••• |  |  |  |  |  |
| r <sub>8</sub>        | 0.   | 6   | 1              | 8              | 0   | 3                            | 3   | 9                     | 45  | ••• | ••• |  |  |  |  |  |
| •••                   | •••• | ••• | ••••           | ••••           | ••• | •••                          | ••• | •••                   | ••• | ••• |     |  |  |  |  |  |

## Flipped Diagonal Number D

```
D is in \mathbb{R}^{[0,1)}
But for all n, we have
D≠r<sub>n</sub> since they differ on
n<sup>th</sup> digit (which is not 9)
⇒ list was incomplete
\Rightarrow \mathbb{R}^{[0,1)} is not countable
```

The set of all functions  $f: \mathbb{N} \rightarrow \{0,1,...,9\}$  is not countable

#### The set of all functions $f: \mathbb{N} \rightarrow \{0,1,...,9\}$ is not countable

Suppose for contradiction that the set  $S = \{f : (f : \mathbb{N} \to \{0,1,...,9\})\}$  is countable. Then, there exists a function  $g : \mathbb{N} \to S$  that is surjective.

Construct a function h : 
$$\mathbb{N} \to \{0,1,...,9\}$$
 as follows:  
h(n) = 9 - g(n)(n)

Note that  $h \in S$ , because it is a function from  $\mathbb{N} \to \{0,1,...,9\}$ . We claim h is not in our listing. Consider g(n). Note that g(n)(n) is a number between 0 and 9; however,  $9 - x \neq x$ . So,  $h \neq g(n)$ . So, h is not in our listing.

This is a contradiction; so, it follows that S is uncountable.

#### Non-computable Functions

The set of all functions  $f: \mathbb{N} \to \{0, 1, ..., 9\}$  is uncountable. The set of all Java programs is countable.

There are INFINITELY many functions that uncomputable.

#### **Back to the Halting Problem**

- Suppose that there is a program H that computes the answer to the Halting Problem
- We will build a table with a row for each program (just like we did for uncountability of reals)
- If the supposed program H exists then the D program we constructed as before will exist and so be in the table
- But D must have entries like the "flipped diagonal"
  - D can't possibly be in the table.
  - Only assumption was that H exists. That must be false.

### Some possible inputs x

|                                                          |                                                                         |                        |                      | Como poccibio impato X |                      |                      |          |      |   |   |   |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------|------------------------|----------------------|------------------------|----------------------|----------------------|----------|------|---|---|---|--|--|
|                                                          | <p<sub>1&gt;</p<sub>                                                    | > <p<sub>2&gt;</p<sub> | <p<sub>3&gt;</p<sub> | <p<sub>4&gt;</p<sub>   | <p<sub>5&gt;</p<sub> | <p<sub>6&gt;</p<sub> |          |      |   |   |   |  |  |
| $\overline{P_1}$                                         | 0                                                                       | 1                      | 1                    | 0                      | 1                    | 1                    | 1        | 0    | 0 | 0 | 1 |  |  |
| $P_2$                                                    | 1                                                                       | 1                      | 0                    | 1                      | 0                    | 1                    | 1        | 0    | 1 | 1 | 1 |  |  |
| $P_3$                                                    | 1                                                                       | 0                      | 1                    | 0                      | 0                    | 0                    | 0        | 0    | 0 | 0 | 1 |  |  |
| $P_4$                                                    | 0                                                                       | 1                      | 1                    | 0                      | 1                    | 0                    | 1        | 1    | 0 | 1 | 0 |  |  |
| $P_5$                                                    | 0                                                                       | 1                      | 1                    | 1                      | 1                    | 1                    | 1        | 0    | 0 | 0 | 1 |  |  |
| brograms<br>P <sub>6</sub> P <sub>7</sub> P <sub>8</sub> | 1                                                                       | 1                      | 0                    | 0                      | 0                    | 1                    | 1        | 0    | 1 | 1 | 1 |  |  |
| P <sub>7</sub>                                           | 1                                                                       | 0                      | 1                    | 1                      | 0                    | 0                    | 0        | 0    | 0 | 0 | 1 |  |  |
| <b>2</b> P <sub>8</sub>                                  | 0                                                                       | 1                      | 1                    | 1                      | 1                    | 0                    | 1        | 1    | 0 | 1 | 0 |  |  |
| $P_9$                                                    |                                                                         |                        |                      | •                      |                      | •                    | <b>.</b> |      |   |   |   |  |  |
| •                                                        |                                                                         |                        |                      | •                      |                      | •                    | •        | •    | • |   |   |  |  |
| •                                                        | (P,x) entry is 1 if program P halts on input x and 0 if it runs forever |                        |                      |                        |                      |                      |          |      |   |   |   |  |  |
|                                                          | 1                                                                       |                        |                      | an                     | u U II               | it i ui              |          | CVCI |   |   |   |  |  |

## Some possible inputs x

<P<sub>4</sub>> <P<sub>5</sub>> <P<sub>5</sub>> <P<sub>5</sub>> <P<sub>7</sub>> <P<sub>7</sub>>

# D behaves like flipped diagonal

|         |                | \r <sub>1</sub> / | \r 2 | <b>\</b>   3 | \r <sub>4</sub> / | \r <sub>5</sub> / | \r <sub>6</sub> / |    | • • • |   |   |   |
|---------|----------------|-------------------|------|--------------|-------------------|-------------------|-------------------|----|-------|---|---|---|
|         | $P_1$          | 01                | 1    | 1            | 0                 | 1                 | 1                 | 1  | 0     | 0 | 0 | 1 |
|         | $P_2$          | 1                 | 10   | 0            | 1                 | 0                 | 1                 | 1  | 0     | 1 | 1 | 1 |
|         | $P_3$          | 1                 | 0    | 10           | 0                 | 0                 | 0                 | 0  | 0     | 0 | 0 | 1 |
| _       | $P_4$          | 0                 | 1    | 1            | 01                | 1                 | 0                 | 1  | 1     | 0 | 1 | 0 |
| SP      | $P_5$          | 0                 | 1    | 1            | 1                 | 10                | 1                 | 1  | 0     | 0 | 0 | 1 |
| am:     | $P_6$          | 1                 | 1    | 0            | 0                 | 0                 | 10                | 1  | 0     | 1 | 1 | 1 |
| gjó     | $P_7$          | 1                 | 0    | 1            | 1                 | 0                 | 0                 | 01 | 0     | 0 | 0 | 1 |
| program | P <sub>8</sub> | 0                 | 1    | 1            | 1                 | 1                 | 0                 | 1  | 10    | 0 | 1 | 0 |
|         | P <sub>9</sub> |                   |      |              | •                 |                   | •                 |    |       |   |   |   |
|         |                |                   |      |              |                   |                   |                   |    |       |   |   |   |

(P,x) entry is 1 if program P halts on input x and 0 if it runs forever

# recall: code for **D** assuming subroutine **H** that solves the halting problem

- Function D(x):
  - if H(x,x)=1 then
    - while (true); /\* loop forever \*/
  - else
    - no-op; /\* do nothing and halt \*/
  - endif

- If D existed it would have a row different from every row of the table
  - D can't be a program so H cannot exist!