
CSE 311: Foundations of Computing

Lecture 29: Turing Machines

Final exam

• Monday at either 2:30-4:20 p.m. or 4:30-6:20 p.m.

– Kane Hall 220

– You need to fill out Catalyst Survey to say which

you are taking by midnight Sunday night.

– Bring your UW ID and have it out and ready during

the exam

• Comprehensive coverage. If you had a homework

question on it, it is fair game. See link on webpage.

– Includes pre-midterm topics, e.g. formal proofs. Will

contain the same sheets at end.

• Review session: Sunday 4:00-6:00 p.m. EEB 105

– Bring your questions !!

Homework

• Homework 9

– Due today at 5:00 p.m.

– Grading won’t be finished until after the final

• Look for cse311 e-mail with pointer to solutions for

Homework 9 overnight tonight

– Will be on password-protected webpage

Computers and algorithms

• Does Java (or any programming language) cover all possible
computation? Every possible algorithm?

• There was a time when computers were people who did
calculations on sheets paper to solve computational
problems

• Computers as we known them arose from trying to
understand everything these people could do.

Before Java

1930’s:
How can we formalize what algorithms are possible?

• Turing machines (Turing, Post)

– basis of modern computers

• Lambda Calculus (Church)

– basis for functional programming, LISP

• µ-recursive functions (Kleene)

– alternative functional programming basis

Turing machines

ChurchChurchChurchChurch----Turing Thesis:Turing Thesis:Turing Thesis:Turing Thesis:

Any reasonable model of computation that includes all

possible algorithms is equivalent in power to a Turing

machine

Evidence

– Intuitive justification

– Huge numbers of models based on radically

different ideas turned out to be equivalent to TMs

Turing machines

• Finite Control
– Brain/CPU that has only a finite # of possible “states

of mind”

• Recording medium
– An unlimited supply of blank “scratch paper” on

which to write & read symbols, each chosen from a
finite set of possibilities

– Input also supplied on the scratch paper

• Focus of attention
– Finite control can only focus on a small portion of the

recording medium at once

– Focus of attention can only shift a small amount at a
time

Turing machines

• Recording medium
– An infinite read/write “tape” marked off into cells

– Each cell can store one symbol or be “blank”

– Tape is initially all blank except a few cells of the tape
containing the input string

– Read/write head can scan one cell of the tape - starts on
input

• In each step, a Turing machine
1. Reads the currently scanned cell

2. Based on current state and scanned symbol

i. Overwrites symbol in scanned cell

ii. Moves read/write head left or right one cell

iii. Changes to a new state

• Each Turing Machine is specified by its finite set of rules

Turing machines

_ _ 1 1 0 1 1 _ _

_ 0 1

s1 (1, L, s3) (1, L, s4) (0, R, s2)

s2 (0, R, s1) (1, R, s1) (0, R, s1)

s3

s4

UW CSE’s Steam-Powered Turing Machine

Original in Sieg Hall stairwell

Turing machines

Ideal Java/C programs:

– Just like the Java/C you’re used to programming
with, except you never run out of memory

• Constructor methods always succeed

• malloc in C never fails

Equivalent to Turing machines except a lot easier to
program:

– Turing machine definition is useful for breaking
computation down into simplest steps

– We only care about high level so we use programs

Turing’s big idea part 1: Machines as data

Original Turing machine definition:

– A different “machine” M for each task

– Each machine M is defined by a finite set of
possible operations on finite set of symbols

– So... M has a finite description as a sequence of
symbols, its “code”, which we denote <MMMM>

You already are used to this idea with the notion of the
program code or text but this was a new idea in Turing’s
time.

Turing’s big idea part 2: A Universal TM

• A Turing machine interpreter UUUU

– On input <M> and its input x,

U outputs the same thing as M does on input x

– At each step it decodes which operation M would have

performed and simulates it.

• One Turing machine is enough

– Basis for modern stored-program computer

Von Neumann studied Turing’s UTM design

M
input

x
output

M(x) U
x output

M(x)
<<<<M>>>>

Takeaway from undecidability

• You can’t rely on the idea of improved

compilers and programming languages to

eliminate major programming errors

– truly safe languages can’t possibly do general

computation

• Document your code

– there is no way you can expect someone else

to figure out what your program does with just

your code; since in general it is provably

impossible to do this!

We’ve come a long way!

• Propositional Logic.

• Boolean logic and circuits.

• Boolean algebra.

• Predicates, quantifiers and predicate logic.

• Inference rules and formal proofs for propositional and

predicate logic.

• English proofs.

• Set theory.

• Modular arithmetic.

• Prime numbers.

• GCD, Euclid's algorithm, modular inverse, and

exponentiation.

We’ve come a long way!

• Induction and Strong Induction.

• Recursively defined functions and sets.

• Structural induction.

• Regular expressions.

• Context-free grammars and languages.

• Relations and composition.

• Transitive-reflexive closure.

• Graph representation of relations and their closures.

We’ve come a long way!

• DFAs, NFAs and language recognition.

• Product construction for DFAs.

• Finite state machines with outputs at states.

• Minimization algorithm for finite state machines

• Conversion of regular expressions to NFAs.

• Subset construction to convert NFAs to DFAs.

• Equivalence of DFAs, NFAs, Regular Expressions

• Finite automata for pattern matching.

• Method to prove languages not accepted by DFAs.

• Cardinality, countability and diagonalization

• Undecidability: Halting problem and evaluating properties

of programs.

What’s next? ...after the final exam...

• Foundations II (312)

– Fundamentals of counting, discrete probability,

applications of randomness to computing,

statistical algorithms and analysis

– Ideas critical for machine learning, algorithms

• Data Abstractions (332)

– Data structures, a few key algorithms, parallelism

– Brings programming and theory together

– Makes heavy use of induction and recursive defns

Course Evaluation Online

• Fill this out by Sunday night!

– Your ability to fill it out will disappear at

11:59 p.m. on Sunday.

– It will be worth your while to fill it out!

• Look for an important message on the

cse311 mailing list about course

evaluations this evening

Final exam

• Monday at either 2:30-4:20 p.m. or 4:30-6:20 p.m.

– Kane Hall 220

– You need to fill out Catalyst Survey to say which

you are taking by midnight Sunday night.

– Bring your UW ID and have it out and ready during

the exam

• Comprehensive coverage. If you had a homework

question on it, it is fair game. See link on course webpage.

– Includes pre-midterm topics, e.g. formal proofs. Will

contain the same sheets at end.

• Review session: Sunday 4:00-6:00 p.m. EEB 105

– Bring your questions !!

