CSE 311: Foundations of Computing

Lecture 29: Turing Machines

WHEN IT CAME TO EATING STRIPS OF CANDY BUTTONS, coee -
THERE WERE TWOMAIN STRATEGIES. SOME KIDs cooeee
CARBFULLY REMOVED EACH BEAD, CHECKING QGGOQ
oy =R=T-=L=

CLOSELY FOR PAFER RESIDUE. BEFERE EATING .

OTHERS TORE THE CANDY
OFF HAPHAZARDLY,
SWALLOWING LARGE 4CRAPS
OF PAPER AS THEY ATE..

THEN THERE WERE THE LONELY FEW OF US
WHO MOVED BACK AND FORTH ON THE STRIF, EEEEEER
EATING ROWS OF BEADs HERE AND THERE, sf fhr §2i

PRETENDING WE WERE TLRING MACHINES.

Final exam

* Monday at either 2:30-4:20 p.m. or 4:30-6:20 p.m.
— Kane Hall 220
— You need to fill out Catalyst Survey to say which
you are taking by midnight Sunday night.
— Bring your UW ID and have it out and ready during
the exam

 Comprehensive coverage. If you had a homework
question on it, it is fair game. See link on webpage.

— Includes pre-midterm topics, e.g. formal proofs. Will
contain the same sheets at end.

* Review session: Sunday 4:00-6:00 p.m. EEB 105
— Bring your questions !!

Homework

e Homework 9
— Due today at 5:00 p.m.
— Grading won’t be finished until after the final

 Look for cse311 e-mail with pointer to solutions for
Homework 9 overnight tonight

— Will be on password-protected webpage

Computers and algorithms

 Does Java (or any programming language) cover all possible
computation? Every possible algorithm?

 There was a time when computers were people who did
calculations on sheets paper to solve computational
problems

 Computers as we known them arose from trying to
understand everything these people could do.

Before Java

1930’s:

How can we formalize what algorithms are possible?
e Turing machines (Turing, Post)
— basis of modern computers
 Lambda Calculus (Church)
— basis for functional programming, LISP
* u-recursive functions (Kleene)
— alternative functional programming basis

Turing machines

Church-Turing Thesis:

Any reasonable model of computation that includes all
possible algorithms is equivalent in power to a Turing
machine

Evidence
— Intuitive justification

— Huge numbers of models based on radically
different ideas turned out to be equivalent to TMs

Turing machines

* Finite Control

— Brain/CPU that has only a finite # of possible “states
of mind”

* Recording medium

— An unlimited supply of blank “scratch paper” on
which to write & read symbols, each chosen from a
finite set of possibilities

— Input also supplied on the scratch paper

 Focus of attention

— Finite control can only focus on a small portion of the
recording medium at once

— Focus of attention can only shift a small amount at a
time

Turing machines

* Recording medium
— An infinite read/write “tape” marked off into cells
— Each cell can store one symbol or be “blank”

— Tape is initially all blank except a few cells of the tape
containing the input string

— Read/write head can scan one cell of the tape - starts on

input ——
=191 - [¥o n
* |In each step, a Turing machine | n ~ ’(- =
1. Reads the currently scanned cell ON
2. Based on current state and scanned symbol @
i. Overwrites symbol in scanned cell ~

ii. Moves read/write head left or right one cell /
iii. Changes to a new state

 Each Turing Machine is specified by its finite set of rules

Turing machines

S:I_ (17 L7 53) (17 L7 54) (07 R7 S2)

"\9 52 (07 R7 Sl) (17 R’ 1 (O’ R’<Sl>

UW CSE’s Steam-Powered Turing Machine

1Y

g

A K
EOD TR

Original in Sieg Hall stairwell

Turing machines

Ideal Java/C programs:

— Just like the Java/C you're used to programming
with, except you never run out of memory

e Constructor methods always succeed
* mallocin C never fails

Equivalent to Turing machines except a lot easier to
program:

— Turing machine definition is useful for breaking
computation down into simplest steps

— We only care about high level so we use programs

Turing’s big idea part 1: Machines as data

Original Turing machine definition:
— A different “machine” M for each task

— Each machine M is defined by a finite set of
possible operations on finite set of symbols

— So... M has a finite description as a sequence of
symbols, its “code”, which we denote <M>

You already are used to this idea with the notion of the
program code or text but this was a new idea in Turing’s
time.

Turing’s big idea part 2: A Universal TM

* A Turing machine interpreter U

— Oninput <M> and its input x,
U outputs the same thing as M does on input x

— At each step it decodes which operation M would have
performed and simulates it.

* One Turing machine is enough
— Basis for modern stored-program computer
Von Neumann studied Turing’s UTM design

input output X — output

X—|M |— M(x) <> Y| T MKX)

Takeaway from undecidability

* You can’t rely on the idea of improved
compilers and programming languages to
eliminate major programming errors

— truly safe languages can’t possibly do general
computation

Document your code

— there is no way you can expect someone else
to figure out what your program does with just
your code; since in general it is provably
impossible to do this!

We’'ve come a long way!

* Propositional Logic.

 Boolean logic and circuits.

 Boolean algebra.

* Predicates, quantifiers and predicate logic.

* |Inference rules and formal proofs for propositional and
predicate logic.

* English proofs.

* Set theory.

* Modular arithmetic.
* Prime numbers.

 GCD, Euclid's algorithm, modular inverse, and
exponentiation.

We’ve come a long way!

* |Induction and Strong Induction.

* Recursively defined functions and sets.

e Structural induction.

* Regular expressions.

 Context-free grammars and languages.

* Relations and composition.

* Transitive-reflexive closure.

* Graph representation of relations and their closures.

We’ve come a long way!

* DFAs, NFAs and language recognition.

* Product construction for DFAs.

* Finite state machines with outputs at states.
 Minimization algorithm for finite state machines
 Conversion of regular expressions to NFAs.

* Subset construction to convert NFAs to DFAs.
 Equivalence of DFAs, NFAs, Regular Expressions

* Finite automata for pattern matching.

* Method to prove languages not accepted by DFAs.
* Cardinality, countability and diagonalization

* Undecidability: Halting problem and evaluating properties
of programs.

What’'s next? ...after the final exam...

| Z
* Foundations Il (321)

— Fundamentals of counting, discrete probability,
applications of randomness to computing,
statistical algorithms and analysis

— |Ideas critical for machine learning, algorithms

 Data Abstractions (332)

— Data structures, a few key algorithms, parallelism
— Brings programming and theory together
— Makes heavy use of induction and recursive defns

Course Evaluation Online

* This should be filled out by Sunday night

— Your ability to fill it out will disappear at
11:59 p.m. on Sunday.

— It will be worth your while to fill it out!

* Look for an important message on the
cse311 mailing list about course
evaluations this evening

Final exam

* Monday at either 2:30-4:20 p.m. or 4:30-6:20 p.m.
— Kane Hall 220
— You need to fill out Catalyst Survey to say which
you are taking by midnight Sunday night.
— Bring your UW ID and have it out and ready during
the exam

 Comprehensive coverage. If you had a homework
qguestion on it, it is fair game. See link on course webpage.

— Includes pre-midterm topics, e.g. formal proofs. Will
contain the same sheets at end.

* Review session: Sunday 4:00-6:00 p.m. EEB 105
— Bring your questions !!

