CSE 311: Foundations of Computing

Lecture 28: Undecidability and Reductions

DEFINE DOES IT HALT (PROGRAM):

RETURN TRUE;

3

ł

THE BIG PICTURE SOLUTION TO THE HALTING PROBLEM

Review: Countability vs Uncountability

- To prove a set A countable you must show
 - There exists a listing x_1, x_2, x_3, \dots such that every element of A is in the list.
- To prove a set B uncountable you must show
 - For every listing x₁,x₂,x₃, ... there exists some element in B that is not in the list.
 - The diagonalization proof shows how to describe a missing element d in B based on the listing $x_1, x_2, x_3, ...$. *Important:* the proof produces a d no matter what the listing is.

Last time: Undecidability of the Halting Problem

CODE(P) means "the code of the program **P**"

The Halting Problem

Given: - CODE(P) for any program P - input x

Output: true if P halts on input x false if P does not halt on input x {(cDE(P),x) : P halts ~~

Theorem [Turing]: There is no program that solves the Halting Problem

We use the term "undecidable" since it is a true/false question that is not computable.

Why, intuitively, is this hard?

This really is a legal C program...

What does this program do?


```
11
public static void collatz(n) {
   if (n == 1) {
                                             34
      return 1;
                                             17
   }
                                             52
   if (n % 2 == 0) {
                                             26
      return collatz(n/2)
                                             13
   }
                                             40
   else {
                                             20
      return collatz(3*n + 1)
   }
                                             10
}
                                             5
                                             16
What does this program do?
                                             8
   ... on n=11?
                                             4
   2
```

1

```
public static void collatz(n) {
   if (n == 1) {
      return 1;
   }
   if (n % 2 == 0) {
      return collatz(n/2)
   }
   else {
      return collatz(3*n + 1)
                            Nobody knows whether or not
   }
                            this program halts on all inputs!
}
                            Trying to solve this has been
What does this program do?
                            called a "mathematical disease".
   ... on n=11?
```

Last time: Undecidability of the Halting Problem

CODE(P) means "the code of the program **P**"

The Halting Problem

Given: - CODE(P) for any program P - input x

Output: true if P halts on input x false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

Proof: By contradiction.

Assume that a program **H** solving the Halting program does exist. Then program **D** must exist

H solves the halting problem implies that H(CODE(D),x) is **true** iff D(x) halts, H(CODE(D),x) is **false** iff not

Note: Even though the program D has a while(true), that doesn't mean that the program D actually goes into an infinite loop on input x, which is what H has to determine

Where did the idea for creating **D** come from?

	Con	nec	tion	to d	iago	ona	lizat	ion	Write	e < P >	for CC)DE(P)
-		<p<sub>1></p<sub>	<p<sub>2></p<sub>	<p<sub>3></p<sub>	<p<sub>4></p<sub>	<p<sub>5></p<sub>	<p<sub>6></p<sub>		Some	e possi	ble inp	<mark>outs</mark> :	x
	P_1	0	1	1	0	1	1	1	0	0	0	1	•••
	P_2	1	1	0	1	0	1	1	0	1	1	1	
	P_3	1	0	1	0	0	0	0	0	0	0	1	
ری ۲	P_4	0	1	1	0	1	0	1	1	0	1	0	
am	P ₅	0	1	1	1	1	1	1	0	0	0	1	•••
000	P_6	1	1	0	0	0	1	1	0	1	1	1	• • •
	P ₇	1	0	1	1	0	0	0	0	0	0	1	•••
A	P ₈	0	1	1	1	1	0	1	1	0	1	0	• • •
	P ₉	.	• •		•		•			•			

(P,x) entry is 1 if program P halts on input x and 0 if it runs forever

•

(P,x) entry is 1 if program P halts on input x and 0 if it runs forever

```
public static void D(x) {
    if (H(x,x) == true) {
        while (true); /* don't halt */
    }
    else {
        return; /* halt */
    }
}
```

D halts on input code(P) iff H(code(P),code(P)) outputs false iff P doesn't halt on input code(P)

Therefore for any program P, **D** differs from P on input code(P)

The Halting Problem isn't the only hard problem

 Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable

General method:

Prove that if there were a program deciding B then there would be a way to build a program deciding the Halting Problem.

"B decidable → Halting Problem decidable" Contrapositive:

"Halting Problem undecidable \rightarrow B undecidable"

Therefore B is undecidable

Students should write a Java program that:

- Prints "Hello" to the console
- Eventually exits

Gradelt, Practicelt, etc. need to grade the students.

How do we write that grading program?

WE CAN'T: THIS IS IMPOSSIBLE!

A related undecidable problem

- HelloWorldTesting Problem:
 - Input: CODE(Q) and x
 - Output:

True if Q outputs "HELLO WORLD" on input xFalse if Q does not output "HELLO WORLD" on input x

- **Theorem:** The HelloWorldTesting Problem is undecidable.
- Proof idea: Show that if there is a program T to decide HelloWorldTesting then there is a program H to decide the Halting Problem for code(P) and x.

A related undecidable problem x

 Suppose there is a program T that solves the HelloWorldTesting problem. Define program H that takes input CODE(P) and x and does the following:

CODE

Y2S

No

COPETA

- Creates CODE(Q) from CODE(P) by
 - (1) removing all output statements from CODE(P), and
 - (2) adding a System.out.println("HELLO WORLD") immediately before any spot where P could halt

Then runs **T** on input CODE(Q) and x.

- If P halts on input x then Q prints HELLO WORLD and halts and so H outputs true (because T outputs true on input CODE(Q))
- If **P doesn't halt on input x** then **Q** won't print anything since we removed any other print statement from CODE(**Q**) so **H** outputs **false**

We know that such an H cannot exist. Therefore T cannot exist.

The HaltsNoInput Problem

- Input: CODE(R) for program R
- Output: True if R halts without reading input False otherwise.

Theorem: HaltsNoInput is undecidable

General idea "hard-coding the input":

Show how to use CODE(P) and x to build CODE(R) so
 P halts on input x ⇔ R halts without reading input

"Hard-coding the input":

- Show how to use CODE(P) and x to build CODE(R) so
 P halts on input x ⇔ R halts without reading input
- Replace input statement in CODE(P) that reads input x into variable var, by a hard-coded assignment statement:
 var = x
 to produce CODE(R).
- So if we have a program **N** to decide **HaltsNoInput** then we can use it as a subroutine as follows to decide the Halting Problem, which we know is impossible:
 - On input CODE(P) and x, produce CODE(R). Then run N on input CODE(R) and output the answer that N gives.

• The impossibility of writing the CSE 141 grading program follows by combining the ideas from the undecidability of HaltsNoInput and HelloWorld.

More Reductions

- Can use undecidability of these problems to show that other problems are undecidable.
- For instance:

EQUIV(P,Q):

Trueif P(x) and Q(x) have the same
behavior for every input xFalseotherwise

Not every problem on programs is undecidable! Which of these is decidable?

•	Input CODE (F) and x
	Output: true	if P prints "ERROR" on input x
		after less than 100 steps
	false	otherwise
•	Input CODE (F) and x
•	Input CODE (F Output: true	P) and x if P prints "ERROR" on input x
•	Input CODE(F Output: true	P) and x if P prints "ERROR" on input x after more than 100 steps

Rice's Theorem (a.k.a. Compilers Suck Theorem - informal): Any "non-trivial" property of the **input-output behavior** of Java programs is undecidable.

Computers and algorithms

- Does Java (or any programming language) cover all possible computation? Every possible algorithm?
- There was a time when computers were people who did calculations on sheets paper to solve computational problems

 Computers as we known them arose from trying to understand everything these people could do.

1930's:

How can we formalize what algorithms are possible?

- Turing machines (Turing, Post)
 - basis of modern computers
- Lambda Calculus (Church)
 - basis for functional programming
- μ-**recursive functions** (Kleene)
 - alternative functional programming basis

Church-Turing Thesis:

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence

- Intuitive justification
- Huge numbers of equivalent models to TM's based on radically different ideas

Turing machines

Finite Control

 Brain/CPU that has only a finite # of possible "states of mind"

Recording medium

- An unlimited supply of blank "scratch paper" on which to write & read symbols, each chosen from a finite set of possibilities
- Input also supplied on the scratch paper

Focus of attention

- Finite control can only focus on a small portion of the recording medium at once
- Focus of attention can only shift a small amount at a time

Turing machines

Recording medium

- An infinite read/write "tape" marked off into cells
- Each cell can store one symbol or be "blank"
- Tape is initially all blank except a few cells of the tape containing the input string
- Read/write head can scan one cell of the tape starts on input

• In each step, a Turing machine

- Reads the currently scanned symbol
- Based on current state and scanned symbol
 Overwrites symbol in scanned cell
 Moves read/write head left or right one cell
 - Changes to a new state
- Each Turing Machine is specified by its finite set of rules