
CSE 311: Foundations of Computing

Lecture 28: Undecidability and Reductions



Review:  Countability vs Uncountability

• To prove a set A countable you must show

– There exists a listing x1,x2,x3, ... such that every 

element of A is in the list.

• To prove a set B uncountable you must show

– For every listing x1,x2,x3, ... there exists some 

element in B that is not in the list.

– The diagonalization proof shows how to describe a 

missing element d in B based on the listing x1,x2,x3, ... .       
Important: the proof produces a d no matter what the listing is. 



Last time: Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]:   There is no program that solves 

the Halting Problem

The Halting Problem

Given: - CODE(P) for any program P

- input x

Output: true if P halts on input x

false if P does not halt on input x

Why, intuitively, is this hard?

We use the term “undecidable” since it is a true/false 

question that is not computable.



This really is a legal C program...

What does this program do?

_(__,___,____){___/__<=1?_(__,___+1,___ 

_):!(___%__)?_(__,___+1,0):___%__==___ / 

__&&!____?(printf("%d\t",___/__),_(__,_ 

__+1,0)):___%__>1&&___%__<___/__?_( 

__,1+ 

___,____+!(___/__%(___%__))):___<__*__ 

?_(__,___+1,____):0;}main(){_(100,0,0);} 



A “Simple” Program

public static void collatz(n) {

if (n == 1) {

return 1;

}

if (n % 2 == 0) {

return collatz(n/2)

}

else {

return collatz(3*n + 1)

}

}

What does this program do?

… on n=11?

… on n=10000000000000000001?
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A “Simple” Program

public static void collatz(n) {

if (n == 1) {

return 1;

}

if (n % 2 == 0) {

return collatz(n/2)

}

else {

return collatz(3*n + 1)

}

}

What does this program do?

… on n=11?

… on n=10000000000000000001?

Nobody knows whether or not 

this program halts on all inputs!

Trying to solve this has been 

called a “mathematical disease”. 



Last time: Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]:   There is no program that solves 

the Halting Problem

Proof:  By contradiction.

Assume that a program H solving the Halting 
program does exist.  Then program D must exist

The Halting Problem

Given: - CODE(P) for any program P

- input x

Output: true if P halts on input x

false if P does not halt on input x



H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */

}
}

Does D(CODE(D)) halt?

Note: Even though the program D has a
while(true), that doesn’t mean that the 
program D actually goes into an infinite 
loop on input x, which is what H has to 
determine



H solves the halting problem implies that                              
H(CODE(D),x) is true iff D(x) halts,  H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */

}
}

Does D(CODE(D)) halt?

Contradiction!



Where did the idea for creating D come from?



Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

Write <P> for CODE(P)

This listing of all programs really does exist 

since the set of all Java programs is countable

The goal of this “diagonal” argument is not 

to show that the listing is incomplete but 

rather to show that a “flipped” diagonal 

element is not in the listing



Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0     1     1     0    1     1    1     0      0      0    1  ...

1     1     0     1    0     1    1     0      1      1   1  ...

1     0     1     0    0     0    0     0      0      0    1  ...

0     1     1  0    1     0    1     1      0      1   0  ...

0     1     1     1    1     1    1     0      0      0   1  ...

1     1     0     0    0     1    1     0      1      1   1  ...

1     0     1     1    0     0    0     0      0      0   1  ...

0     1     1     1    1     0    1     1      0      1   0  ...

.     .   .  .   .    .   .   .   .    .    .       .  

.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Write <P> for CODE(P)



Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1     1     0    1     1    1     0      0      0    1  ...

1     1 0     1    0     1    1     0      1      1   1  ...

1     0     1 0    0     0    0     0      0      0    1  ...

0     1     1  0 1     0    1     1      0      1   0  ...

0     1     1     1    1 1    1     0      0      0   1  ...

1     1     0     0    0     1 1     0      1      1   1  ...

1     0     1     1    0     0    0 0      0      0   1  ...

0     1     1     1    1     0    1     1 0      1   0  ...

.     .   .  .   .    .   .   .   .    .    .       .  

.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

1

0

0

1

0

0

1

0

Write <P> for CODE(P)

Want behavior of program 𝑫 to be 
like the flipped diagonal, so it can’t 
be in the list of all programs.  



Where did the idea for creating D come from?

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */

}
}

D halts on input code(P)  iff H(code(P),code(P)) outputs false

iff P doesn’t halt on input code(P)

Therefore for any program P,  D differs from P on input code(P)



The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is 
undecidable to show that other problems are 
undecidable

General method:

Prove that if there were a program deciding B then there    
would be a way to build a program deciding the Halting 
Problem. 

“B decidable  → Halting Problem decidable”

Contrapositive:

“Halting Problem undecidable → B undecidable” 

Therefore B is undecidable



A CSE 141 assignment

Students should write a Java program that:

– Prints “Hello” to the console

– Eventually exits

GradeIt, PracticeIt, etc. need to grade the 

students. 

How do we write that grading program?

We can’T:  THIS IS IMPOSSIBLE!



A related undecidable problem

• HelloWorldTesting Problem: 

– Input:  CODE(Q) and x

– Output: 

True if Q outputs “HELLO WORLD” on input x

False if Q does not output “HELLO WORLD” on input x

• Theorem: The HelloWorldTesting Problem is undecidable.

• Proof idea:  Show that if there is a program T to decide 

HelloWorldTesting then there is a program H to decide the 

Halting Problem for code(P) and x.   



A related undecidable problem

• Suppose there is a program T that solves the 

HelloWorldTesting problem.   Define program H that takes 

input CODE(P) and x and does the following:

– Creates CODE(Q) from CODE(P) by 

(1) removing all output statements from CODE(P), and 

(2) adding a System.out.println(“HELLO WORLD”) immediately 

before any spot where P could halt

Then runs T on input CODE(Q) and x.

• If P halts on input x then Q prints HELLO WORLD and halts and so H
outputs true (because T outputs true on input CODE(Q))

• If P doesn’t halt on input x then Q won’t print anything since we removed 
any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot  exist.



The HaltsNoInput Problem

• Input:  CODE(R) for program R

• Output: True if R halts without reading input

False otherwise.

Theorem:  HaltsNoInput is undecidable

General idea “hard-coding the input”: 

• Show how to use CODE(P) and x to build CODE(R) so 
P halts on input x ⇔ R halts without reading input



The HaltsNoInput Problem

“Hard-coding the input”: 

• Show how to use CODE(P) and x to build CODE(R) so
P halts on input x  ⇔ R halts without reading input

• Replace input statement in CODE(P) that reads input x into 
variable var, by a hard-coded assignment statement:    

var = x

to produce CODE(R).

• So if we have a program N to decide HaltsNoInput then we 
can use it as a subroutine as follows to decide the Halting 
Problem, which we know is impossible:
– On input CODE(P) and x, produce CODE(R).   Then run N on input 

CODE(R) and output the answer that N gives.



• The impossibility of writing the CSE 141 grading 

program follows by combining the ideas from the 

undecidability of HaltsNoInput and HelloWorld.



More Reductions

- Can use undecidability of these problems to show that 

other problems are undecidable.

- For instance:

EQUIV(𝑃, 𝑄) : True if 𝑃 𝑥 and 𝑄(𝑥) have the same 

behavior for every input x
False otherwise



Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

• Input CODE(P) and x

Output: true if P prints “ERROR” on input x

after less than 100 steps

false otherwise

• Input CODE(P) and x

Output: true    if P prints “ERROR” on input x

after more than 100 steps

false otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):

Any “non-trivial” property of the input-output behavior of 

Java programs is undecidable.



Computers and algorithms

• Does Java (or any programming language) cover all possible 
computation? Every possible algorithm?

• There was a time when computers were people who did 
calculations on sheets paper to solve computational problems

• Computers as we known them arose from trying to understand 
everything these people could do.



before Java

1930’s:
How can we formalize what algorithms are possible?

• Turing machines (Turing, Post)

– basis of modern computers

• Lambda Calculus (Church)

– basis for functional programming

• m-recursive functions (Kleene)

– alternative functional programming basis



Turing machines

Church-Turing Thesis:

Any reasonable model of computation that includes all possible 

algorithms is equivalent in power to a Turing machine

Evidence

– Intuitive justification

– Huge numbers of equivalent models to TM’s 

based on radically different ideas



Turing machines

• Finite Control
– Brain/CPU  that has only a finite # of possible “states 

of mind”

• Recording medium
– An unlimited supply of blank “scratch paper” on 

which to write & read symbols, each chosen from a 
finite set of possibilities

– Input also supplied on the scratch paper

• Focus of attention
– Finite control can only focus on a small portion of the 

recording medium at once

– Focus of attention can only shift a small amount at a 
time



Turing machines

• Recording medium
– An infinite read/write “tape” marked off into cells
– Each cell can store one symbol or be “blank”
– Tape is initially all blank except a few cells of the tape containing the 

input string
– Read/write head can scan one cell of the tape - starts on input

• In each step, a Turing machine
– Reads the currently scanned symbol
– Based on current state and scanned symbol

Overwrites symbol in scanned cell
Moves read/write head left or right one cell
Changes to a new state

• Each Turing Machine is specified by its finite set of rules


