
CSE 311: Foundations of Computing

Lecture 28: Undecidability and Reductions

Review: Countability vs Uncountability

• To prove a set A countable you must show

– There exists a listing x1,x2,x3, ... such that every

element of A is in the list.

• To prove a set B uncountable you must show

– For every listing x1,x2,x3, ... there exists some

element in B that is not in the list.

– The diagonalization proof shows how to describe a

missing element d in B based on the listing x1,x2,x3,
Important: the proof produces a d no matter what the listing is.

Last time: Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]: There is no program that solves

the Halting Problem

The Halting Problem

Given: - CODE(P) for any program P

- input x

Output: true if P halts on input x

false if P does not halt on input x

Why, intuitively, is this hard?

We use the term “undecidable” since it is a true/false

question that is not computable.

This really is a legal C program...

What does this program do?

_(__,___,____){___/__<=1?_(__,___+1,___

_):!(___%__)?_(__,___+1,0):___%__==___ /

__&&!____?(printf("%d\t",___/__),_(__,_

__+1,0)):___%__>1&&___%__<___/__?_(

__,1+

___,____+!(___/__%(___%__))):___<__*__

?_(__,___+1,____):0;}main(){_(100,0,0);}

A “Simple” Program

public static void collatz(n) {

if (n == 1) {

return 1;

}

if (n % 2 == 0) {

return collatz(n/2)

}

else {

return collatz(3*n + 1)

}

}

What does this program do?

… on n=11?

… on n=10000000000000000001?

11

34

17

52

26

13

40

20

10

5

16

8

4

2

1

A “Simple” Program

public static void collatz(n) {

if (n == 1) {

return 1;

}

if (n % 2 == 0) {

return collatz(n/2)

}

else {

return collatz(3*n + 1)

}

}

What does this program do?

… on n=11?

… on n=10000000000000000001?

Nobody knows whether or not

this program halts on all inputs!

Trying to solve this has been

called a “mathematical disease”.

Last time: Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]: There is no program that solves

the Halting Problem

Proof: By contradiction.

Assume that a program H solving the Halting
program does exist. Then program D must exist

The Halting Problem

Given: - CODE(P) for any program P

- input x

Output: true if P halts on input x

false if P does not halt on input x

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

Does D(CODE(D)) halt?

Note: Even though the program D has a
while(true), that doesn’t mean that the
program D actually goes into an infinite
loop on input x, which is what H has to
determine

H solves the halting problem implies that
H(CODE(D),x) is true iff D(x) halts, H(CODE(D),x) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

Does D(CODE(D)) halt?

Contradiction!

Where did the idea for creating D come from?

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

Write <P> for CODE(P)

This listing of all programs really does exist

since the set of all Java programs is countable

The goal of this “diagonal” argument is not

to show that the listing is incomplete but

rather to show that a “flipped” diagonal

element is not in the listing

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1 1 0 1 1 1 0 0 0 1 ...

1 1 0 1 0 1 1 0 1 1 1 ...

1 0 1 0 0 0 0 0 0 0 1 ...

0 1 1 0 1 0 1 1 0 1 0 ...

0 1 1 1 1 1 1 0 0 0 1 ...

1 1 0 0 0 1 1 0 1 1 1 ...

1 0 1 1 0 0 0 0 0 0 1 ...

0 1 1 1 1 0 1 1 0 1 0 ...

.

.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Write <P> for CODE(P)

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1

P2

P3

P4

P5

P6

P7

P8

P9

.

.

0 1 1 0 1 1 1 0 0 0 1 ...

1 1 0 1 0 1 1 0 1 1 1 ...

1 0 1 0 0 0 0 0 0 0 1 ...

0 1 1 0 1 0 1 1 0 1 0 ...

0 1 1 1 1 1 1 0 0 0 1 ...

1 1 0 0 0 1 1 0 1 1 1 ...

1 0 1 1 0 0 0 0 0 0 1 ...

0 1 1 1 1 0 1 1 0 1 0 ...

.

.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

1

0

0

1

0

0

1

0

Write <P> for CODE(P)

Want behavior of program 𝑫 to be
like the flipped diagonal, so it can’t
be in the list of all programs.

Where did the idea for creating D come from?

public static void D(x) {
if (H(x,x) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

D halts on input code(P) iff H(code(P),code(P)) outputs false

iff P doesn’t halt on input code(P)

Therefore for any program P, D differs from P on input code(P)

The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is
undecidable to show that other problems are
undecidable

General method:

Prove that if there were a program deciding B then there
would be a way to build a program deciding the Halting
Problem.

“B decidable → Halting Problem decidable”

Contrapositive:

“Halting Problem undecidable → B undecidable”

Therefore B is undecidable

A CSE 141 assignment

Students should write a Java program that:

– Prints “Hello” to the console

– Eventually exits

GradeIt, PracticeIt, etc. need to grade the

students.

How do we write that grading program?

We can’T: THIS IS IMPOSSIBLE!

A related undecidable problem

• HelloWorldTesting Problem:

– Input: CODE(Q) and x

– Output:

True if Q outputs “HELLO WORLD” on input x

False if Q does not output “HELLO WORLD” on input x

• Theorem: The HelloWorldTesting Problem is undecidable.

• Proof idea: Show that if there is a program T to decide

HelloWorldTesting then there is a program H to decide the

Halting Problem for code(P) and x.

A related undecidable problem

• Suppose there is a program T that solves the

HelloWorldTesting problem. Define program H that takes

input CODE(P) and x and does the following:

– Creates CODE(Q) from CODE(P) by

(1) removing all output statements from CODE(P), and

(2) adding a System.out.println(“HELLO WORLD”) immediately

before any spot where P could halt

Then runs T on input CODE(Q) and x.

• If P halts on input x then Q prints HELLO WORLD and halts and so H
outputs true (because T outputs true on input CODE(Q))

• If P doesn’t halt on input x then Q won’t print anything since we removed
any other print statement from CODE(Q) so H outputs false

We know that such an H cannot exist. Therefore T cannot exist.

The HaltsNoInput Problem

• Input: CODE(R) for program R

• Output: True if R halts without reading input

False otherwise.

Theorem: HaltsNoInput is undecidable

General idea “hard-coding the input”:

• Show how to use CODE(P) and x to build CODE(R) so
P halts on input x ⇔ R halts without reading input

The HaltsNoInput Problem

“Hard-coding the input”:

• Show how to use CODE(P) and x to build CODE(R) so
P halts on input x ⇔ R halts without reading input

• Replace input statement in CODE(P) that reads input x into
variable var, by a hard-coded assignment statement:

var = x

to produce CODE(R).

• So if we have a program N to decide HaltsNoInput then we
can use it as a subroutine as follows to decide the Halting
Problem, which we know is impossible:
– On input CODE(P) and x, produce CODE(R). Then run N on input

CODE(R) and output the answer that N gives.

• The impossibility of writing the CSE 141 grading

program follows by combining the ideas from the

undecidability of HaltsNoInput and HelloWorld.

More Reductions

- Can use undecidability of these problems to show that

other problems are undecidable.

- For instance:

EQUIV(𝑃, 𝑄) : True if 𝑃 𝑥 and 𝑄(𝑥) have the same

behavior for every input x
False otherwise

Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

• Input CODE(P) and x

Output: true if P prints “ERROR” on input x

after less than 100 steps

false otherwise

• Input CODE(P) and x

Output: true if P prints “ERROR” on input x

after more than 100 steps

false otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):

Any “non-trivial” property of the input-output behavior of

Java programs is undecidable.

Computers and algorithms

• Does Java (or any programming language) cover all possible
computation? Every possible algorithm?

• There was a time when computers were people who did
calculations on sheets paper to solve computational problems

• Computers as we known them arose from trying to understand
everything these people could do.

before Java

1930’s:
How can we formalize what algorithms are possible?

• Turing machines (Turing, Post)

– basis of modern computers

• Lambda Calculus (Church)

– basis for functional programming

• m-recursive functions (Kleene)

– alternative functional programming basis

Turing machines

Church-Turing Thesis:

Any reasonable model of computation that includes all possible

algorithms is equivalent in power to a Turing machine

Evidence

– Intuitive justification

– Huge numbers of equivalent models to TM’s

based on radically different ideas

Turing machines

• Finite Control
– Brain/CPU that has only a finite # of possible “states

of mind”

• Recording medium
– An unlimited supply of blank “scratch paper” on

which to write & read symbols, each chosen from a
finite set of possibilities

– Input also supplied on the scratch paper

• Focus of attention
– Finite control can only focus on a small portion of the

recording medium at once

– Focus of attention can only shift a small amount at a
time

Turing machines

• Recording medium
– An infinite read/write “tape” marked off into cells
– Each cell can store one symbol or be “blank”
– Tape is initially all blank except a few cells of the tape containing the

input string
– Read/write head can scan one cell of the tape - starts on input

• In each step, a Turing machine
– Reads the currently scanned symbol
– Based on current state and scanned symbol

Overwrites symbol in scanned cell
Moves read/write head left or right one cell
Changes to a new state

• Each Turing Machine is specified by its finite set of rules

